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ABSTRACT

There are several common approaches used to obtain the
kinematic and dynamic equations which describe the motion of
robot manipulators. However, a problem arises when these
conventional body oriented robot arm kinematic equations are
used to simulate the manipulator motion. In this case, the
%géobian matrix which relates the end effector motion to
joint angle variations becomes singular when two successive
arm links align. When the robot arm passes through these
singular points, the jacobian matrix is not invertible, and
a result of this, the motion cannot be simulated. This

thesis investigates how this situation can be avoided by

using a Newton Euler approach to variable difinition, and

using the equations interpretted in a fixed reference frame.
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I. INTRODUCTION

The study of robotics is a fairly new discipline.
Although the roots of these studies and developments can be
traced back to the 1940’s, the first commercial computer
controlled robot was not introduced until the late 1950’s
[(Ref. 1]. Furthermore, as the theory developed, several
common problemmatical methods have been widely accepted and
used.

When robot motion 1is studied, it is usually divided
into two parts: robot arm dynamics and robot arm kinematics.
While the kinematics problem deals with the geometry of the
arm links, the dynamiés problem deals with the study of
forced motion. The dynamics problem is further divided into
two parts: the direct dynamics problem and the inverse
dynamics problem. In the inverse dynamics problem, link
variables such as acceleration and velocity are known and
the forces and necessary joint torques for fhe desired
motion are calculated. In the direct dynamics problem, the
joint torques are known and the accelerations and velocities
of each joint are calculated.

The kinematics problem is also divided into two parts:
the direct kinematics problem and the inverse kinematics
problem. The direct kinematics problem 1is, given a set of

critical geometric joint and link variables for each of the
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Joint-link pairs and the joint angle vector, determine the
position and orientation of +the end effector of the
manipulator. The Denavit-Hartenberg representation, which
uses a homogeneous transformation matrix to describe the
spatial relationships between two adjacent rigid mechanical
links is the most common method used to study the direct
kinematics problem [Ref. 2]. The inverse kinematics problem
is, given a desired position and orientation of the end
effector of the manipulator and a set of critical geometric
Joint and link parameters, determine the corresponding joint
angle vector; i.e., find all of the Jjoint angles of the
robot arm so that the end effector can be positioned in the
desired location.

A difficulty in the solution to the inverse kinematics
problem arises when two successive links align [Ref. 3]. At
these times the angle between two successive links becomes 0
or 180 degrees, and the Jacobian matrix which relates the
end effector motion to the joint variable variations cannot
be inverted. This means that motion cannot be simulated.
Different approaches to this problem have been investigated.
One method deals with the Newton-Euler approach with a
moving coordinate system [Refs. 4, 5], another uses the
Langrangian apprcach [Refs. 6, 7]. One method deals with a
virtual work approach [Ref. 8]. Kane’'s dynamics equations

have been used due to computational efficiency [Ref. 9].
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However, none of these methods have been able <to overcome
this singularity problem [Ref. 3].

Several methods have been proposed to avoid the
singular configuration. One method proposed to minimize the
time near the singular points [Ref. 10], thereby reducing
their effects. In another method, it was proposed to avoid
these singular points by confining the motion [Ref. 11].
Other solutions deal with presenting equations that can
translate the manipulator in the neighborhood of a
singularity <through identification of singular points
beforehand [Refs. 12, 13, 14]. It has also been shown that
the redundancy of robot manipulators is effective in dealing
with the singularities [Refs. 15, 16, 17].

In this thesis the equations of motion are derived
using the principles of Newtonian dynamics in terms of a
globally fixed coordinate system to overcome the singularity
problem. Each link is treated as a free body with forces
and moments applied at the joints and free body analysis is
used to derive the equations of moticn. Although the
equations are relatively 1long and +the solution to the
problem is computationally time consuming, it is shown that
these equations do overcome the singularity problem.- The
direct dynamics and the inverse dynamics problem are both

simulated.
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II. THEORETICAL DEVELOPMENT

A. THEOR? OF THE SOLUTION

To derive the non-singular equations of motion the
Newton-Euler approach is used (Figure 1). Each 1link is
treated as a free body with forces and moments applied to
it, weight has been disregarded. The globally fixed X Y.Z
coordinate system is used for the equations. All 1links are
assumed to be rigid, so the effects of flexibility are not
considered. All of the distances and the directions of the
forces and moments have been based on the fixed coordinate
system rather than a local coordinate system which moves
with the link [Refs. 4, 5]. The 1link masses, the initial
link positions and the orientations are assumed to be known
parameters. As a result of equation derivation in the fixed
reference frame, +the moment of inertia is allowed to change
with respect to time and 1is calculated for each small
integration interval. This is opposed +to keeping inertia
constant as used in the local coordinate formulations. But
it is assumed that the moment of inertia is constant in each
small integration interval. This last assumption
effectively linearizes the equations of motion so that a
non-singular matrix inversion can be used to solve the

equation set.
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To calculate the moment of inertia in each integration
interval, the link direction cosine angles with respect to
the fixed coordinate system were used. Acceleration of
joint zero was input as zero. For each 1link the three
linear acceleration components, three angular acceleration
components and forces at each joint weére considered to be
the unknown variables. Based on the Newtonian dynamics and
the manipulator kinematics ([Ref. 18], the equations were

derived as follows:

B. DYNAMIC EQUATIONS OF MOTION OF LINK ONE

1. Sum of Forces Eaquations

In the free body analysis of link one (Figure 1) the

sum of the forces in the x direction is:

2Fx = Fxl1 - Fx0 = Mlaxl (1)

Similarly sum of the forces in the y direction is:

2Fy = Fyl - Fy0 = Mlayl (2)

and the sum of the forces in the 2z direction is:

Z2Fz = Fzl - Fz0 - W1 = Mlazl (3)
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2. Joint Equations
We begin by evaluating the joint ‘equations at joint
zero [Ref. 19, equation (8/4), pp. 423]). If the joint is
sequested and analysis conducted at a point on 1link zero
(subscript a) and another at a point on link one (subscript
b) that is common to both, so when linked together they are
equal. This results in two equations and the two unknowns

wdl and wl. As a result:

Aa = Ao
which is the acceleration at joint zero, and

Ab = Al + (wdl x rb/Gl) + wl x (wl x rb/Gl)
which is the acceleration of point b on Jjoint one. Here
rb/Gl is the distance from point b to the center of gravity
of link one, and Al is the acceleration at the center of

mass of link one or,

rb/G1

(Jx0-LCOGx1)i + (jyO0-LCOGyl)j + (jz0-LCOGz1)k

rb/Glx + rb/Gly + rb/Glz

After equating Aa and Ab and having the known variables on
the right side of the equation and unknown variables on the

left side the following sets of equations result:

31




Ax1l + wdyl(rb/Glz)

where MICO equals

+ wzlwxl(rb/Glz)

also

Ayl + wdzl(rb/Glx)

where MJCO equals

+ wxlwyl(rb/Glx)

and

Azl + wdxl(rb/Gly)

MKCO equals

+ wylwzl(rb/Gly)

Computing the

wylwxl(rb/Gly) - (wyl)2(rb/Glx)

wzlwyl(rb/Glz) - (wzl1)2(rb/Gly)

- wdz1(rb/Gly)

- wdx1(rb/Glz)

- wdyl(rb/Glx)

wxlwzl(rb/Glx) - (wz1)2(rb/Glz) -

. Sum _of Moment Eauations

sum of the moment

center of gravity results in:
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Aox - MICO

(4)

(w21)2(rb/Glx)

Aoy - MJCO

(5)

(wx1)2(rb/Gly)

Aoz - MKCO (6)

(wyl)2(rb/Glz)

equations about the



2M1 = (r0/Gl x FO) + (rl/Gl x F1) - T1 + TO

where the vector r0/Gl is the distance from joint zero to
the center of gravity of link one and vector rl/Gl is the
distance from Jjoint one +to the center of gravity of link
one, in the x, y and z directions. Such that

r0/Gl = rj0 - rGl

and

rl/Gl = rjl - rGil .
so

rjo0 - rGl = (xjo - xG1)i + (yj0 - yGl1)j + (zjO0 - 2Gl)k
and

rjl - rGl = (xjl1 - xG1)i + (yj1 - yG1)j + (2j1 - 2Gl)k

In the x, ¥y and z directions the sum of moment equations
are:
ZM1 in x direction =
(yjo/G1)Fz0 + (2j0/G1)Fy0 + (yj1/G1)Fzl1l - (2j1/Gl)Fyl
- Tix + TOx (7a)

ZMl1l in y direction=

(2j0/G1)Fx0 + (xjO0/Gl)Fz0 + (2j1/G1)Fx1 - (xj1/Gl)Fzl
-Tly + TOy : (8a)
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ZM1 in z direction=
(xj0/G1)Fy0 + (yjO0/Gl1)Fx0 + (xj1/Gl)Fyl - (yjl1/G1l)Fx1
-Tiz + TOz (9a)

From [Ref.19, equation (57), pp. 227] the sum of the moments
about a fixed point that does not move with the body is
equal to the time rate of change of angular momentum of the
system (H) about the fixed point, 2M = H. In the present
study we have let each 1link be a composite body of two
elements. The angular momentum (H) for a composite body
where the number of elements of the body is two, about the

center of gravity of each link is Hi = 2 (Ri x (w x
Ri)]Mi, where Ri is the distance from the center of gravity
of each link to the appropriate element (1 or 2) in the x, y

and z direction. So:

Hx = 2 [Ryi(wx(Ryi) - wy(Rxi)) - Rzi(wz(Rxi)-
wx(Rzi))IMi

Hx = [R2yl(wx) - Ryl (Rxl)(wy) - Rzi(Rxl)(wz) +
R2z1l(wx) M1 + (R2y2(wx) - Ry2(Rx2)(wy)-
Rz2(Rx2)(wz) + (R2z22)wx]IM2

If Ixx = Ry2 + Rz2 dm,

and Ixy RxRy dm,

"

and Ixz RxRz dm,
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then:
Hx-= [I1xx(wx) - Ilxy(wy) - Ilxz(wz)]M1
+ [I2xx(wx) - I2xy(wy) - I2xz(wz)]IM2
and
HDx = [Ilxx(wdx) - Ilxy(wdy) - Ilxz(wdz)]Ml
+ [I2xx(wdx) - I2xy(wdy) - I2xz(wdz)]M2 (7Tb)

by assuming the moment of inertia changes with time but is
constant for a given time interval.
By similar analysis it can be shown:
Hy = 2 [Rzi(wy(Rzi) -~ wz(Ryi)) -~ Rxi(wx(Ryi)-
wy(Rxi) - wy(in))]Mi

and if Iyy = Rx2 + Rz2 dm,

and Iyz = RyRz dm,
and Ixy = RxRy dm,
then:

HDy = [Ilyy(wdy) - Ilyz(wdz) - Ilyz(wdx)]IM1
+ [I2yy(wdy) - I2yz(wdz) - I2yx(wdx)]M2 (8b)
and
Hz = 2 { Rxi(wz(Rxi) - wx(Rzi)) - Ryi(wy(Rzi)-
wz(Ryi))IMi
if Izz = Rx2 + Ry2 dm,
So Hz = [Ilzz(wz) - Ilyz(wy) - Ilzx(wx)]M1
+ [I2zz(wz) - I2yz(wy) - I2z2x(wx)]M2
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then
HDz = [Ilzz(wdz) - Ilyz(wdy) - Ilzx(wdx)]IM1
+ [I2zz(wdz) - I2yz(wdy) - I2zx(wdx)]IM2 (9b)

Combining equations (7a) and (7b) and keeping known
variables on the right side and unknown variables on the

left side yields:

ZMlx = (-yj0/Gl)Fz0 + (2j0/G1)Fy0 + (yj1/Gl)Fzl
- (2j1/Gl)Fyl - HDx = Tlx - TOx (7)

Combining equations (8a) and (8b) yields:

SMly = (-2j0/Gl1)Fx0 + (xj0/Gl)Fz0 + (z2jl1/G1l)Fx1
- (xj1/G1)Fz1 - HDy = Tly - TOy (8)

Combining equations (9a) and (9b) yields:

ZMlz = -(xj0/Gl)Fy0 + (yjO/Gl)Fx0 + (xj1/Gl)Fyl
- (y31/G1)Fx1l - HDz = Tlz - TOz (9)

C. LINK TWO EQUATIONS
1. Sum of Forces Egquations
From the free body diagram (Figure 1) it follows
that

36




SFx = Fx2 - Fxl = M2ax2 (10)
2Fy = Fy2 - Fyl = M2ay2 (11)
SFz = Fz2 - Fzl = M2az2 (12)

2. Joint Equations
Analysis is conducted at Jjoint one where similar
equations are used as in joint zero with a point on link one

(a) and one on link two (b). For point a the equation is

Aa = Al + wdl x ra/Gl + wl x (wl x ra/Gl)

ra/Gl is a vector whose distance is measured from point a to

the center of gravity of 1link one in the x, y and z

direction.

ra/Gl

(jx1 - LCOGx1)i + (jyl - LCOGy1)jJ
+ (jzl1 - LCOGzl)k
ra/Glx + ra/Gly + ra/Glz

For point b the equation is:

Ab = A2 + wd2 x rb/G2 + w2 x (w2 x rb/G2)
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where rb/G2 is a vector whose distance is measured from

point b to the center of gravity of link two.

rb/G2

(jx1 - LCOGx2)i + (Jjyl - LCOGy2)3J
+ (jzl - LCOGz2)k

rb/G2x + rb/G2y + rb/G2z

Equating Aa and Ab and setting knowns and unknowns

on the respective sides of the equation results in:

Ax2 - Axl + wdy2(rb/G2z) - wdz2(rb/G2y) - wdyl(ra/Glz)

+ wdzl(ra/Gly) = MIC1 - MiC2 (13)

MIC1l = wylwxl(ra/Gly) - (wyl)2‘ra/Gix) - (wzl)2(ra/Glx)
+ wzlwxl(ra/Glz)

MIC2 = wy2wx2(rb/G2y) - (wy2)2(rb/G2x) - (wz2)2(rb/G2x)
+ wz2wx2(rb/G2z)

Ay2 - Ayl + wdz2(rb/G2x - wdx2(rb/G2z) - wdzl(ra/Glx)

+ wdxl(ra/Glz) = MJC1 - MJC2 (14)

MJC1 = wzlwyl(ra/Glz) - (wzl)2(ra/Gly)

(wx1)2(ra/Gly)

+ wxlwyl(ra/Glx)
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MJC2 = wz2wy2(rb/G2z) - (wz2)2(rb/G2y) - (wx2)2(rb/G2y)
+ wx2wy2(rb/G2x)

AZ2 - AZ1 + wdx2(rb/G2y) - wdy2(rb/G2x) - wdxl(ra/Gly)
+ wdyl(ra/Glx) = MKC1 - MKC2 (15)

MKC1

wxlwzl(ra/Glx) - (wxl)2(ra/Glz) -~ (wyl)2(ra/Glz)

+ wylwzl(ra/Gly)

MKC2 wx2wz2(rb/G2x) - (wx2)2(rb/G2z) - (wy2)2(rb/G2z)

+ wy2wz2(rb/G2y)

3. Sum of the Moment Equations

These equations have a similar development as that

of link one:

M2 = (rjl1/G2) x F1 + (rj2/G2) x F2 + T1 - T2

where
rj1/G2 = (xj1 - xG2)i + (yjl - yG2)j + (zjl - 2G2)k
rj2/G2 = (xj2 - xG2)i + (yj2 - yG2)j + (zj2 - 2G2)k |
SM2x = - (yj1 - yG2)Fzl + (2j1 - 2G2)Fyl |
+ (yj2 - yG2)Fz22 - (2j2 - 2G2)Fy2 (
+ Tlx - T2x (16a)
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M2y = - (z2j1 - 2G2)Fx1l + (xjl - xG2)Fzl

+ (232 - 2G2)Fx2 - (xj2 - xG2)Fz2

+ Tly - T2y (17a)
ZM2z = - (xjl1 - xG2)Fyl + (yjl1 - yG2)Fxl1

+ (xj2 - xG2)Fy2 - (yj2 - yG2)Fx2

+ Tiz - T2z (18a)

From angular momentum equation developed for 1link one, it

can be shown for link two:

ZM2x = HDx (16b)
ZM2y = HDy (17b)
ZM2z = HDz (18b)

Combining equations (18a) and (16b) the following
result:
- (yjl - yG2)Fz1 + (zjl - 2G2)Fyl + (yj2 - yG2)Fz2
- (zj2 - 2G2)Fy2 - HDx = - Tlx + T2x (16)

Combining equations (17a) and (17b) yield the
following result:
- (231 - 2G2)Fx1 + (xjl - xG2)Fzl + (zj2 - zG2)Fx2
- (xj2 - xG2)Fz2 - HDy = -Tly + T2y (17)
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Combining equations (18a) and (18b) yield the
following result: -
- (x31 - xG2)Fyl + (yjl - yG2)Fxl + (xj2 - xG2)Fy2
- (yj2 - yG2)Fx2 - HDz = -Tlz + T2z (18)

D. LINK THREE EQUATIONS
1. of F tio

Following similar logic from +that previously

developed:
$Fx = - Fx2 = M3ax3 (19)
Z2Fy = - Fy2 = M3ay3 (20)
2Fz = - Fz2 - W3 = M3az3 (21)

2. Joint Equations
With point a on link two and point b on 1link three

one gets for joint equations at Jjoint two:

Aa = A2 + (wd2 x ra/G2) + w2 x (w2 x ra/G2)

where ra/G2 1is a vector whose distarnce is measured from
point a to center of gravity of link two in the x, y and 2z

direction.
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ra/G2 = (jx2 - LCOGx2)i + (jy2 - LCOGy2)]
‘+ (jz2 - LCOGz2)k
= ra/G2x + ra/G2y + ra/G2z
For point b

Ab = A3 + wd3 x rb/G3 + w3 x (w3 x rb/G3)

where rb/G3 is a vector whose distance is measured from
point b to center of gravity of link three in the x, y and z
direction.

rb/G3

(jx2 - LCOGx3)i + (Jy2 - LCOGy3)J
+ (jz2 - LCOGz3)k

rb/G3x + rb/G3y + rb/G3z
Equating Aa and Ab and setting knowns and unknowns on the

respective sides of the equation results in:

Ax3 - Ax2 + wdy3(rb/G3z) - wdz3(rb/G3y) - wdy2(ra/G2z)
+ wdz2(ra/G2y) = MIC3 - MIC4 (22)

MIC3

wy2wx2(ra/G2y) - (wy2)2(ra/G2x) - (wz2)2(ra/G2x)

+ wz2wx2(ra/G2z)

MIC4

wy3wx3(rb/G3y) - (wy3d)2(rb/G3x) - (wz3)2(rb/G3x
+ wz3wx3(rb/G3z)
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" MJC4

Ay3d - Ay2 + wdz3(rb/G3x) - wdx3(rb/G3z) - wdz2(ra/G2x)
+ wdx2(ra/G2z) = MJC3 - MJC4 (23)

MJC3 wz2wy2(ra/G2z) - (wz2)2(ra/G2y) - (wx2)2(ra/G2y)

+ wx2wy2(ra/G2x)

wz3wy3(rb/G3z) - w2z23(rb/G3y) - w2x3(rb/G3y)

+ wx3wy3(rb/G3x)

A23 - AZ2 + wdx3(rb/G3y) - wdy3(rb/G3x) - wdx2(ra/G2y)
+ wdy2(ra/G2x) = MKC3 - MKC4 (24)

MKC3 = wx2wz2(ra/G2x) - (wx2)2(ra/G2z) - (wy2)2(ra/G2z)
+ wx2wy2(ra/G2y)
MKC4 = wx3wz3(rb/G3x) - (wx3)2(rb/G3z) - (wy3)2(rb/G3z)

+ wy3wz3(rb/G3y)

3. Sum of Moment Equations

As in the development of the equations for link one:

ZM3 = (rj2/G3) x F2 + T2

where

rj2/G3 (x32 - xG3)i + (yj2 - yG3)j + (zj2 - 2GI)k

xj2/G3 + yj2/G3 + zj2/G3
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ZM3x = (-yj2/G3)Fz2 + (2j2/G3)Fy2 + T2x (25a)
M3y = (-232/G3)Fx2 + (xj2/G3)Fz2 + T2y (26a)
M3z = (-xj2/G3)Fy2 + (yj2/G3)Fx2 + T2z (27a)

From the angular momentum theory:

2M3x = HDx
2M3y = HDy
ZM3z = HDz

Combining equations

(-yj2/G3)Fz2 +

Combining equations

(-2J2/G3)Fx2 +

Combining equations

(-xj2/G3)Fy2 +

(25b)
(26b)
(27b)
(25a) and (25b) the following results:
(2zj2/G3)Fy2 - HDx = - T2x (25)
(26a) and (26b) the following results:
(xj2/G3)Fz2 - HDy = - T2y (26)
(27a) and (27b) the foilowing results:

(yj2/G3)Fx2 - HDz = - T2z (27)
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IIT. COMPUTATIONAL APPROACH

A. PROGRAM MATRICIES

The Dynamic Simulation Language (DSL) was used to
simulate the motion. This computer code was compiled on an
IBM 3033 computer by using the FORTVS compiler and all of
the calculations have been done in double precision. The
entire simulation process 1is shown in Figure 2 and is
discussed below.

The principle program matrix, Matrix A (MATA, 27%x27),
was created from the coefficients of the unknown variables
in equations 1 to 27. In the simulation of the direct
dynamics problem, a corresponding 27%1 Matrix B (MatB) was
generated from all known variables, also from equations 1 to
27. A subroutine CPROD was used to perform all the cross
product terms required in the main program. The resulting
equations are shown in Figure 3, in the final matrix form.
During a simulation time step, the 1link inertias, the link
velocities and the link positions were all assumed constant.
IMSL subroutine LEQT2F was called to invert the matrix A and
get the generalized solution x from Ax = B. This subroutine
uses Gaussian elimination with iterative improvement to get
a high accuracy solution to the problem. The output from
LEQT2F then returns as MATB, which contains the solution to

the equations. The outputs were used by DSL to integrate
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the linear and angular accelerations of each link to get the
linear and angular velocities respectively. The linear
velocities for each link were next integrated to get the
linear displacements of center of gravity of each link.
Although the 1linear velocities in the fixed reference frame
can be integrated to get the linear displacements, this idea
is not true for the angular displacéments [Refs. 20, 21].

To get the angular displacements, a set of
transformation matrices must be used on the velocities, then
the motion can be integrated. That is, the angular
velocities of each link in the fixed reference system must
first be converted into ¢ ailavences in a body fixed
coordinate system then into body Euler rates and Euler
angles to define the motion unambigously. In this thesis,
the body coordinate velocities are called Bratel, Brate2 and
Brate3 for the 1link one, 1link +two and 1link three
respectively. To convert thuse velocities into the Euler
rates, another transformation matrix is used. That is, the
transformation matrix is multiplied by body rates to get the
Euler angle rates for each 1link. These later rates are
defined as the Yaw rate (about the x axis), the Pitch rate
(about the y axis) and the Roll rate (about z axis). These
rates are called as Ratel, Rate2 and Roted for link onel
link two and 1link three. After the transformation of
velocities to the Euler rates, they can be directly

integrated to get the Euler angles. 1In this thesis, these
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angles are called the Yaw, pitch and Roll angles about th. x
y 2 axis respectively [Refs. 2, 20)].

This convention is very important and should not be
mixed with another set of Euler angles described differently
in the literature [(Refs. 3, 20]. In addition to that, the
order of the rotation must be decided beforehand. This is
true because the orientation of objects is different when
they are rotated in a different order, i.e., first the
rotation about x axis, then a rotation about the y axis,
finally a rotation about the z axis will produce a different
orientation in space than the one which was defined and used
in this thesis (z, y, then x). The transformation matrices
used here are valid as long as the assumed order of the
rotation is retained.

In the 1literature, a quite different set of angles is
used to describe the orientation [Refs. 2, 3]. While some
of these angles define +the orientation with respect to a
non-orthogonal coordinate system some others may define with
respect to an orthogonal system. Euler angles define an
independent set of coordinates system which are not
orthogonal. Therefore, all three coordinates are
independent from each other and velocities in this
coordinate system can be directly ihtegrated to get the
relevant angles. They describe the unique orientation of
the body in space. The orthogonal set of coordinate axes do

not form an independent coordinate system. This is true
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since the three axis have a certain relation with each other
in any position, i.e., direction cosine angles have a unique
relation in a fixed reference system and cannot be obtained
by integrating any velocity in an orthogonal coordinate
system. The velocities 1in an orthogonal coordinate system
must thus be converted to a nonorthogonal coordinate system
(e.g. Euler angle rates) prior to integration.

After Yaw, Pitch and Roll angles are calculated, it is
possible to go back and express the orientation of the body
with the direction cosines in an orthogonal coordinate
system. The columns of the transformation matrix from one
orthogonal set of axes to another describes the orientation
of the new coordinate axis with respect to old coordinate
system. So, a transformation matrix can be used to get the
direction cosine angles. The direction cosines of each link
are then used to calculate the moment of inertia of the
links. The variation of a link inertia with respect to time
was shown 1in Figure 4 as it was calculated during a
simulation run. The derivation of the <transformation

matrices is shown in Appendix A.

B. CONSTRAINTS IN THE SIMULATION PROGRAM
In the development of the equatiois, thus far, each
link has been treated such that it can move in space without

any constraint. For most cases, however, degrees of freedom
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of each link must be reduced so that the link can move only
in the direction permitted by its joint. |

In the simulation of the direct dynamics problem, the
base rotation is transmitted to the second and third links
for the three revolute joint arm which was studied. This
was simulated by allowing the first 1link to rotate only
aﬁout Z axis. At the same time, thg rotational rates of the
second and third links about the Z axis were made equal.

To make any of the simulation variables zero, meaning
no variation in that direction, one zeroes the related rows
and columns in MatA putting 1 on the diagonal. At the same
time, if the same row in MatB is made =zero, the
corresponding mathematical expression for this equaticn will
be in the form of 1 *x X = 0, and a result of this, X will be
equal zero. This idea can also be applied to MatA and MatB
to make two variables equal so that X1 - X2 = 0. Thus, the

above motion was simulated by constraint.

C. PROGRAM VALIDATION

The validation of the inverse dynamics problem has been
conducted in several cases. In this approach the idea was
to choose an angular acceleration such that at a certain
time, two of the three links would align. In other words,
the links would be in a singular position at this time, and
if the simulation procedure worked, the singularity problem

would have been avoided.
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The validation procedure is shown in Figure 5. For
this procedure 1link two angle was chosen as 6 = (Pi/2) x
sin(pi/2) * Time. This time dependent function has a period
of 4 sec and an amplitude of 90 degrees. The second
derivative of this function is 8 = - ((pix**3)/8) x sin(pi/2)
* Time and corresponds to the angular acceleration of the
link. This value was input as the theoretical angular
acceleration in the simulation program, and corresponding
linear accelerations and forces at each joint were
calculated. The other +two links were forced to_ have zero
rotational velocity throughout the simulation.

To apply a corresponding torque at the joint, MaTA and
MatB were multiplied and a right hand side matrix DQ (27x%1)

was obtained (MATA *x MATB

t

DQ). This matrix DQ (27%1) was
used to solve the simulation equations in the form of

AX = DQ. The vector X (that is, theta) was fedback 1in the
loop and the theoretical and the calculated values of theta
were compared.

The above discussion has been implemented in three
different initials configuration as shown in Figure 6. To
force the arm links to the various singular points, several
different plane motions were simulated. For each
configuration, three different angular motions were input
for 1link 2, or as can be seen from Figure 6, for each
gonfiguration, one angular velocity caused a spinning motion

of the link about the axis with which it was initially
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aligned, while the other two produced a plane motion
according-to direction of the applied angular motion. The
angles between two successive links were measured for each
motion. Figure 7 shows the angle variation between link 1
and 1link 2, and 1link 2 and 1link 3 corresponding to an
angular acceleration applied in the X direction for
configuration A. As can be seen from Figures 7 and 8, two

successive links pass through the singular points every 2

seconds, i.e., they align and the angle between links
becomes either 0 or 180 degrees. (The singular points are
marked on the graph). Figure 8 shows the angle variations

for an angular motion applied in +the 2 direction for
configuration A. In this cﬁse, it is obvious that the angle
between link 1 and link 2 ‘is always constant (90 degrees).
The second graph on Figure 8 shows the angle between link 2
and link 3 now, singularity occurs on the Z motion, with the
singularities marked as in Figure 8. Figure 7 and Figure 8
are representative of the data obtained in the validation
procedure which analyzed nine possible motions of link 2
leading the singularity. This data showed that singularity
in these directions could be overcome, and a solution to the
problem exists using this approach.

For each run, the error between the theoretical and the
simulated value of Theta was computed. Figure 9 shows the

percent error for the X motion for configuration A (Figure 7

Data). The trend of the error is representative of every
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case investigated. The figure shows that, due to nature of
the numerical integration, the error slightly accumlapes
during the simulation, but still has very small value. This
proves that the direct dynamics problem can be solved very

accurately by Newton-Euler approach in a fixed coordinate

system,
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IV. RESULTS AND RECOMMENDATIONS

A dynamic model of a three link, rigid revolute joint
manipulator has been developed in this thesis, as a
general computer program package.

Several runs for different initial configurations were

simulated and the singularity problem was investigated.

Theoretical and calculated values of angular positions

were compared. It was proved that the singularity

problem could be overcome by using a Newton-Euler
approach in a fixed coordinate system.

The following recommendations are provided:

a. Enhance the code and make it more interactive.
That is, 1let the user specify the constraints he
wants to apply on each link by answering
interactive questions before the actual simulation
run starts. Thus, the motion can be simulated
with different constraints without going into the
code and changing the relevant parameters.

b. Adapt the code for use in a microcomputer. Add a
subroutine in the program to invert the matrix A.
Thus, the code will be more independent from
outside routines and more adaptable to other

computer systems.
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Validation of the approach via actual experimental
tests in crucial. This will establish a way of
developing accurate constants for subsequent
controller design and provide a basis for
compensation of gravity effects. Determining
these constants for the code will make the
simulation program more concrete and will provide
more physical insight.

Finally, develop a controller for a manipulator
which makes use of the present algorithm for

validation and design.
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APPENDIX A

DERIVATION OF THE TRANSFORMATION MATRIX FROM
EARTH FIXED COORDINATE SYSTEM TO BODY FIXED COORDINATE SYSTEM

The angular velocity terms obtained by integration of
the angular acceleration terms are with respect to an Earth
fixed coordinate system. To define the Euler angles which
are called Yaw Pitch and Roll angles in this thesis, we
have to establish an appropriate body fixed coordinate
system. Thus, U, V and W is a right hand coordinate system
[Ref. 20] with its origin fixed at the center of gravity of
a link. The U, V, W coordinate system is initially oriented
such that the angles between two coordinate system axes are
simultaneously reduced to zero, 1i.e., i, J, k, axis are
parellel to the I, J, K respectively.

If a rotation from X Y Z coordinate system to the U V W
coordinate system is accomplished by first rotation about K
axis (roll), then about J axis (pitch) and finally about 1
axis (yaw), it follows that for any arbitrary point in the X
Y 2 coordinate system, the corresponding coordinates in the

UV W system are;
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where MatR is a 3x3 matrixﬁ

To get the transformation matrix, we need to

rotation separately.

Rotation about the Z axis;

examine each

u:Xc¢d+Ys¢

VeXs¢ +Yed

W 2
- = -
ul [<¢ s¢ o
V[=[-s¢ c§ o
W o o 1
L J L i

Rotation about the Y axis;

z
w

Y,

Vs

Y

WaXse+ZC6
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Rotation about the X axis;

Ue X

Vs YCP + Z2S Y

Wa-YSYP4+ ZCY
- 1 T RIEM
u { O (] X
Vi=|O0 cy Sy Y
wJ o -sy cy||Z

By multiplying three rotation matrix together;

[ cocd ces¢ -5
MATR =« | sysecd-cysé sysesg+cycy syce
cysecd + Sys$ Cysosd - Sycp c‘{,:caJ
where C = COos
S = Sin
T = Tan

The transformation matrix from body fixed to Euler

coordinate system is obtained as below [Ref. 20].

-

K cy -Sy

I Tesy  tecg
0 SeceS¥ SecBey

-

The angles discussed above are shown in Figure 10.
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APPENDIX B

THREE DIMENSIONAL DIRECT DYNAMICS SIMULATION PROGRAM

TERMINAL

METHOD ADAMS

PRINT .05,DRCANX(1-3),DRCANY(1-3),DRCANZ(1-3),...
JX0,JY0,320,J%X1,J¥1,321,JK2,3Y2,322, ...
LCOGX(1-3),LC0GY(1-3),L60GZ(1- 35

CONTROL FINTIM =2.0, DELMAX = DELPRT = .05
D DIMENSION MATA(27 27),MASS(3,2),L(3 2),RX(3,2),RY$3,2§,RZ(3,2)
D DIMENSION IXX(3,2),1%2(3,2),1x¢(3,2),1¥v¥(3,2).1v2(3.2},122(3,2)
D DIMENSION MAT1R23,3; MArzaés,ag,uArsaés,sg
D DIMENSION MATIT(3.3).MAT2T{3.3) MAT3T(3.3
D INTEGER IER,I,J,M.KR,P,N,IA,IDGT A
EXCLUDE IA,IDGT,IER.I.J.M.K.P.N, A
ARRAY MATB(27),LCOGX(3) LEOGY(3), LcoGcz(3)
ARRAY VECTAO(3§,VECTBO(3), VECTAL(3),VECTB1(3),VECTA2(3),VECTB2(3)
ARRAY wvx<3),wny(s),woz(35,w123§,w2(3),w3(3)
ARRAY RATEL(3),RATE2(3),RATE3(3) BRATE1(3),BRATE2(3),BRATE3(3)
ARRAY RBGL(3),RAG1(3),RBG2(3),RAG2(3),RBG3(3)
ARRAY SUMHDX(3),SUMHDY(3),SUMHDZ(3),HDX(2) ,HDY(2) ,HDZ(2) ,WKAREA(850)
ARRAY IXXT(3),IYYT(3),122T(3),IXYT(3),IX2T(3),I¥ZT(3)
ARRAY YAWANX(3),PTCANY(3),ROLANZ(3
ARRAY DRCANX(3),DRCANY(3} ' DRCaANZ(3
ARRAY DRCRAX(3) DRCRAY(3).DRCRAZ(3
ARRAY DRCSX(3),DRCSY(3),DRCSZ(3)
DATA MATA/729 = 0.0D0/
INITIAL
* INPUT PARAMETER CONSTANTS
A = 5.0D0
P = 0.0D0
W = 2.0D0 * PI
IDGT = 3
G=0.0D0
N=27
M=1
IA =27
* INPUT JOINT LOCATIONS IN METERS
JX0 = 0,0D0
JYO = 0.0D0
Jz0 = 0.0DO0
J¥1 = 0.0DO0
JY1 = 0.0DO0
JZ1 = 1.0D0
JX2 = 0.0D0
JY2 = 1.0D0
Jz2 = 1.0D0
* INPUT TORQUE CONSTANTS
TOX = 0.0D0
TOY = 0.0D0
TOZ = 0.0D0
T1¥ = 0.0D0
T1Z = 0.0D0
T2Y = 0.0D0
T2Z = 0.0D0
* INPUT DISTANCE FROM CENTER OF LINK TO CENTER OF MASS
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30

*

*

3

INPUT MAS

INPUT OME

INPUT MASS OF

H LINK ENDS
L(1,1) = 0.50D0
L(1,2) = 0.50D0
L(2,1) = 0.50D0
L(2,2) = 0.50D0
Lt3,1) = 0.50D0
L(3,2) = 0.50D0

5 AT
MASS(1,1) = 2.5D0
MASS(1,2) = 2.5D0
MASS(2,1) = 2.5D0
MASS(2,2) = 2.5D0
MASS(3,1) = 2.5D0
MASS(3,2) = 2.5D0

GA AN

DO 30I=1,3

INPUT LOCATION QF LINK

LCOGX(1) = 0.0D0
X1 = LCOGX(1)
LCOGY(1) = 0.0D0
Y1 G

= LCOGZ(I)
%COGX(Z) = 0.0D0

oxs2)
LCOGY(2) S

y2 = LCOGY(Z)
LCOGZ(2) =
z2 LC &

X3 = LCOGX§3)
LCOGY(3) = 1.8D0
Y3 LCOGY(3)
LC0GZ(3) = 1.0D0
Z3 = LCOGZ(3)

= 5.0D0
MASS2 = 5.0D0
MASS3 = 5.0D0

{
1
1

LINK ENDS IN KILOGRAMS

D OMEGA DOT, YAW, PITCH, AND ROLL ANGLES

W1(1 = 0.0D0

W2 (I = 0.0D0

W3 (1 = 0.0D0

WDX (1 = 0.0D0

WDY (I = 0.0D0

WDZ (1 = 0.0D0

YAWANX(I) = 0.0DO

PTCANY(I) = 0.0D0

ROLANZ(I) = 0.0D0

CONTINUE

YWRX1 = YAWANX(1) * DEGRA
PTRY1 = PTCANY(1) * DEGRA
RLRZ1 = ROLANZ(1) * DEGRA
YWRX2 = YAWANX(2) * DEGRA
PTRY2 = PTCANY(2) * DEGRA
RLRZZ = ROLANZ(2) * DEGRA
YWRX3 = YAWANX(3) * DEGRA
PTRY3 = PTCANY(3) * DEGRA
RLRZ3 = ROLANZ(3) * DEGRA

CENTERS OF GRAVITY

EACH LINK IN KG AND COMPUTE WEIGHTS IN NEWTONS

INPUT ACCELERATION OF JOINT ZERO
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A0X = 0.0DQ
A0Y = 0.0D0
A0Z = 0.0D0

INITIALIZE MATRIX A AND B TO ZERO

DO 40 I = 1,27
DO 50 J = 1,27
MATA(I,J) = 0.0DO

50 CONTINUE
40 CONTINUE
DO 60 I = 1,27
MATB(I) = 0.0DO
60 CONTINUE
* INITIALIZE THE TRANSFORMATION MATRICIES AND VELOCITIES
DO 63 I = 1,3
DO 64 J = 1,3
RATEL (I = 0.0D0
RATEZ(T = 0.0D0
RATE3(I = 0.0D0
BRATEI(I) = 0.0DO
BRATEZ(I) = 0.0DO
BRATE3(I) = 0.0D0
MATIT (I,J) = 0.0DO
MAT2T (I,J) = 0.0DQ
MAT3T (I,J) = 0.0DQ
MATIR (I,J) = 0.0D0
MAT2R (I,J) = 0.0DO
MAT3R (I,J) = 0.0D0
64 CONTINUE
63 CONTINUE
DERIVATIVE
NOSORT
CALL ERRSET (208,256,-1,1,1)
LEVELQ = 0
CALL UERSET(LEVELQ,LEVLDQ)
* INITIALIZE MATRIX A AND B TO ZERO
DO 70 I = 1,27
DO 80'J = 1,27
MATA(I,J) = 0.0DO
80 CONTINUE
70 CONTINUE
DO 90 I = 1,27
MATB(I) = 0.0DO
90 CONTINUE

INPUT JOINT EQUATIONS
JOINT ZERO EQUATIONS
AB = AGL + (WD1 X RB/Gl) + W1 X (W1 X RB/G1)

VECTAO(1) = WDX(1

VECTAQ(2) = WDY(1

VECTAO(3) = WDz (1

RBG1(1) = JXO - LCOGX(1

RBGL(2) = JY0 - LCOGY(1

RBGL(3) = J20 - LCOGZ(1

CALL CPROD(VECTAQ,RBG1,MIAQ,MJAQ,MKAO)

VECTAO(1) = Wi(1

VECTAO(2) = W1(2

VECTAO(3) = WI(3

CALL CPROD(VECTAO,RBGl,MIBO,MJBO,MKBO)
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VECTBO(1) = MIBO
VECTBO(2) = MJBO
VECTBO(3) = MKBO

CALL CPROD(VECTAO,VECTBO,MICO,MJCO,MKCO)
JOINT ONE EQUATIONS---
AA = AG1 + (WDl X RA/Gl) + W1 X (Wl X RA/G1)

VECTAL1(1) = WDX(1
VECTAL(2) = WDY(l
VECTAL{3) = wD2(1
RAGL(1) = JX1 - LCOGK(1
RAG1{2) = JY1 - LCOG¥(1
RAGL(3) = JZ1 - LCOGZ(1
CALL CPROD(VECTAL,RAGL,MIAL,MJAL, MKAL)
VECTAL(1) = Wi(1
VECTA1§2§ = w1§2§
VECTAL(3) = W1(3
CALL CPROD (VECTAl,RAG1,MIB1,MJB1,MKB1)
VECTB1(1) = MIB1
VECTB1(2) = MJB1
VECTB1(3) = MKB1

CALL CPROD (VECTAl,VECTB1,MIC1,MJC1, MKC1)
AB = AG2 + (WD2 X RB/G2) + W2 X (W2 X RB/G2)

VECTAL(1) = WDX(2
VECTAL(2) = WD¥(2
VECTAL(3) = WD2(2
RBG2(1) = JX1 - LCOGX(2
RBG2(2) = JY1 - LCOGY(2
RBG2(3) = Jz1 - LCOGZ(2
CALL CPROD (VECTAL, RBG2,MIA2,MJA2,MKA2)
VECTAL(1) = W2(1
VECTAL(2) = W2(2
VECTA1(3) = W2(3
CALL CPROD (VECTAl,RBG2,MIB2,MJB2,MKB2)
VECTB1(1) = MIB2
VECTB1(2) = MJB2
VECTB1(3) = MKB2

CALL CPROD (VECTAl,VECTB1,MIC2,MJC2,MKC2)
JOINT TWO EQUATIONS
AA = AG2 + (WD2 X RA/G2) + W2 X (W2 X RA/G2)

VECTA2(1) = WDX(2
VECTA2(2) = WDY(2
VECTA2(3) = WDZ(2
RAG2(1) = JX2 - LCOGX(2
RAG2(2) = J¥2 - LCOGY(2
RAGZ(3) = JzZ - LCoGZ(2
CALL CPROD (VECTA2,RAG2,MIA3,MJA3,MKA3)
VECTA2(1) = W2(1
VECTAZ(2) = W2(2
VECTA2(3) = W2(3
CALL CPROD (VECTAZ,RAG2,MIB3,MJB3,MKB3)
VECTB2(1) = MIB3
VECTB2{2) = MJB3
VECTB2(3) = MKB3

CALL CPROD(VECTA2,VECTB2,MIC3,MJC3,MKC3)
AB = AG3 + (WD3 X RB/G3) + W3 X (W3 X RB/G3)
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*

VECTA2(1) = WDX!3
VECTA2(2) = wovsa
VECTA2({3) = WDZ(3
RBG3(1) = JX2 - LCOGX(3
RBG3(2} = JY2 - LCOGY(3
RBG3{3) = Jz2 - LCOGZ(3
CALL CPROD (VECTA2,RBG3,MIA4,MKA4, MKA4)
VECTA2(1) = W3(1
VECTA2(2) = W3(2
VECTA2(3) = W3(3
CALL CPROD (VECTA2,RBG3,MIB4,MJB4,MKB4)
VECTB2(1) = MIB4
VECTB2(2) = MJB4
VECTB2(3) = MKB4

CALL CPROD (VECTA2,VECTB2,MIC4,MJC4,6MKC4)

SUM OF MOMENTS EQUATIONS
po 100 I =1,3
COMPUTE HX,H DOT X,HY,H DOT Y, HZ,H DOT 2

RX(I,1) = -L(I,1) * DCOS(DRCRAX(I

RX(I.2) = L(I.2) * DCOS(DRCRAX(I

RY(I 1) = -L{I.1} * DCOS(DRCRAY(I

RY(I.2) = L{I'2) * DCOS{DRCRAY(I

RZ{I'1) = -L{I.1) * DCOS(DRCRAZ(I

RZ(I.2) = L(I.2) * DCOS(DRCRAZ(I
DL Sy ~ (B xR s (Befl 1) X RT3
IXKXT(1) = IXX(1,1) + IXX(I,2}
IF (IXKT(I) .LE. .020) THEN
§§§§(I) =".020
§§§T§§) = IXXT(I)
IXY(I.1) = MASS(I,1) * RX(I,1) * RY(I,1
IXY?I,Z; = MAssﬁx,zg * Rx§1,2§ * Rygr,zg
IXYT(I) = IXY(I, 1) + IXV(I.Z
IXZ(I,1) = MASS(I,1) * RZ(I,1) * RX(I,1
1xz§1,2; = MAssgr,zg * RZ§I,2§ * Rxéz,zg
IKZT(1) = 1XZ2(1,1) + 1X2(1,2
B8 RS ¢ R B TR B SRR
IYY(I,1) = MASS(I,1) * ((RX(I,1) * RX(I,1)) + (RZ(I,1) * RZ(I,1
YL L) D MASST) L ((RE(EL) X RROLAN 1 (R R) X RBLEE)
IyyT(1)’ = 1vy(r, i)+ 1vv(I,2}
IF (IY¥T(1) .LE. .020) THEN
IYYT(I) = .020
ELSE
By =
Iyzsx,lg = MASS 1,13 * RY(I,1) * 3221,1;
1vz(1,2) = MASS§1,2 * RY§I,2§ * RZ{I.2
IvzT(1)’ = 1v2(1,1) + 1vZ(I.2
HDY(L) 2 WDROD) 3 OIGR(LOL) T WDROD) L OIMCE-R) T NBENE % RS
IZZ(1,1) = MASS(I,1) * ((RX(I,1) * RX(I,1)) + RYEI,IB * RY§1,1;;;
Izzgr,z; = MAssér,zg * génxér 2; * Rxéx,z,; + éRY 1.2) * RY(I.2
1227(1)’ = 12z(1,1) + 122(I,2)
IF (1zzT(I) .LE. .020) THEN
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100

12ZT(I) = .020
ELSE
122T(I) = 122T(I)
END IF
HDZZI; = wozszg'* IZZSI,I; - woxs:; * IXZ
HDZ(2) = WDZ(I) * I2Z(I,2) - WDX(I) * IXZ
SUMHDX(I) = HDX(1) + HDX(2
SUMHDY(I) = HDY(1l) + HDY(2
SUMHDZ(I) = HDZ(l) + HDZ(2
CONTINUE
ENTER CONSTANTS INTO MATRIX A
LINK ONE
SUM OF FORCES IN THE X DIRECTION
MATA(1,1) = 1.0D0O
MATA(1,4) = MASS1
MATA(1,10) = -1.0D0
MATB(1) = 0.0D0
SUM OF FORCES IN Y DIRECTION
MATA 2,23 = 1.000
MATA(2.5) = MASS1
MATA(2,11) = -1.0D0"
MATB(2) = 0.0D0
SUM OF FORCES IN Z DIRECTION
MATA 3,3; = 1.0D0
MATA(3,6) = MASS1
MATA(3,12) = -1.0D0
SUM OF FORCES LINK ONE EQUAL
MATB(3) = -WGl

EQUATIONS AT JOINT ZERO
IN THE X DIRECTION

2

I

I:%;

- WDY
- WDY

)

—— v ———

* 1Y2
* 1YZ

SUM OF MOMENTS EQUATIONS FOR LINK ONE IN THE X,Y,Z2 DIRECTIONS

MATA(4,4) = 1.0D0
MATA(4.8) = Raslzzg
MATA(4,9) = -RBG1(2
MATB(4) = AOX - MICO
IN THE Y DIRECTION
MATA(S,5) = 1.0DQ
MATA(5,7) = -RBGIéB;
MATA(5,9) = RBG1(1
MATB(5) = AOY - MJCO
IN THE 2 DIRECTION
MATA(6,6) = 1.0DQ
MATA(6.7) = RBGlgzg
MATA(6,8) = -RBG1(1l
MATB(6) = A0Z - MKCO
MATA(7,2) = RBG1(3
MATA(7,3) = -RBG1(2
MATA(7,7) = -IRXT(l
MATA(7,8) = IXYT(l
MATA(7,9) = IX2T(l
MATA 7,11; = -RAG1({3
MATA(7,12) = RAGL(2
MATB(7) = TI1X - TOX
MATA(8,1) = -RBG1(3)
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MATA(8,3) = RBGI(1
MATA(8.7) = IXYT(1
MATA(8.8) = -IVYT(1
MATA(8.9) = IYZT({1
MATA 8,10; = RAGL(3
MATA(8,12) = -RAG1(1
MATB(8) = TlY - TOY
amey 1
MATA(9.7) = IXZT(1) + IXZT(2) + IXZT(3
MATA(9.8) = IVZT(1) + I¥ZzT(2) + IYZT(3
MATA(9.9) = -IzzT(1} - 1zzT{2) - 1zzT(3
MATA 9,10; = -RAG1(2
MATA(9,11) = RAGI(l
MATB(9) = T1Z - TOZ

LINK TWO

SUM OF FORCES IN X DIRECTION
MATA(10,10) = 1.0DO
MATA(10'13) = MASS2
MATA(10,19) = -1.0D0
MATB(10) = 0.0D0

SUM OF FORCES IN THE Y DIRECTION
MATA(11,11) = 1.0DO
MATA(11'14) = MASS2
MATA(11.20) = -1.0D0
MATB(11) = 0.0D0

SUM OF FORCES IN THE Z DIRECTION
MATA(12,12) = 1.0D0
MATA(12,15) = MASS2
MATA(12.21) = -1.0DO

SUM OF FORCES LINK TWO EQUAL
MATB(12) = -WG2

EQUATIONS AT JOINT ONE

IN THE X DIRECTION
MATA(13,4) = -1.0DO
MATA(13 8) = -RA0123
MATA{13/9) = RAG1(2
MATA(13'13) = 1.0DO
MATA(13.17) = RBGZ§3
MATA(13,18) = -RBG2(2
MATB(13) = MICl - MIC2

IN THE Y DIRECTION
MATA(14,5) = -1.0DO
MATA(14.7) = RAGléS
MATA(14.9) = -RAGL{1
MATA(14.14) = 1.0DO
MATA(14.16) = -RBczgs
MATA(14.18) = RBG2(1
MATB(14) = MJCl - MJC2

IN THE Z DIRECTION
MATA(15,6) = -1.0D0
MATA(15.7) = -RAGL(2
MATA(15.8) = RAGL{1
MATA(15,15) = 1.0D0
MATA(15.16) = RBG2(2
MATA(15'17) = -RBG2{1
MATB(15) = MKCl - MKC2

SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE X,Y,Z DIRECTIONS
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MATA(16,11) = RBG2(3
MATA(16,12) = -RBGZ{2
MATA(16,16) = -IXXT{2
MATA(16,17) = IXYT(2
MATA(16,18) = IXzZT(2
MATA(16,20) = -RAG2(3
MATA(16,21) = RAG2{2
MATB(16) = (~T1X + T2X) * DCOS(RLRZ1)
MATA(17,10) = -RBG2(3
MATA(17,12) = RBG2{1
MATA(17,16) = IXYT(2
MATA(17,17) = -IYYT{2
MATA(17,18) = 1IYZT(2
MATA(17,19) = RAG2(3
MATA(17,21) = -RAGZ{1
MATB(17) = (=~ T1Y + T2Y) * DSIN(RLRZ1)
MATA(18,9) = -1.0DO
MATA(18,18) = 1.0DO
MATB(18} = 0.0D0
MATA(18,10) = RBG2(2
MATA(18,11) = -RBG2!{1
MATA(18,16) = IXZT(2) + IXZT(3
MATA(18,17) = 1I¥ZT(2) + IYZT(3
MATA(18,18) = -1z2T{2} - IZZT{3
MATA(18.19) = -RAG2(2
MATA(18,20) = RAG2{1
MATB(18) = - T1Z + T22
LINK THREE
SUM OF FORCES IN THE % DIRECTION
MATA219,l9g = 1.0D0
MATA(19,22) = MassS3
MATB(19) = 0.0D0
SUM OF FORCES IN THE Y DIRECTION
HATAgzo,zog = 1,000
MATA(20,23) = MASS3
MATB(20) = 0.0D0
SUM OF FORCES IN THE Z DIRECTION
MATA§21,21; = 1,000
MATA(21.24) = MASS3

MATB(21) = -WG3
EQUATIONS AT JOINT TWO
IN THE X DIRECTION

MATA(22,13) = ~1.0DQ
MATA(22,17) = -RAG2 3;
MATA(22,18) = RAG2(2
MATA(22,22) = 1.0D
MATA(22,26) = RBG3§3;
MATA(22,27) = -RBG3(2
MATB(22) = MIC3 - MIC4
IN THE Y DIRECTION
MATA(23,14) = -1.0D0
MATA(23,16) = RAGZEB;
MATA(23,18) = -RAG2(1
MATA(23,23) = 1.0D0
MATA(23,25) = -RBG3E3;
MATA(23,27) = RBG3(l
MATB(23) = MJC3 - MIC4
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* IN THE Z DIRECTION
MATA(24,15) = -1.0D0
MATA(24,16) = -RA6222;
MATA(24,17) = RAG2(1
MATA(24,24) = 1.0DO
MATA(24,25) = ascsézg
MATA(24,26) = -RBG3(1
MATB(24) = MKC3 ~ MKC4
* SUM OF MOMENTS EQUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS
MATA(25,20) = RBG3(3
MATA(25,21) = -RBG3(2
MATA(25,25) = -IXXT(3
MATA(25,26) = IXYT(3
5 MATA(25.,27) = 1IX2T(3
1 MATB(25) = -T2X * DCOS(RLRZ1)
MATA(26,19) = -RBG3(3
MATA(26.21) = RBG3(1
MATA(26.25) = IXYT(3
MATA(26.26) = -IYYT(3
MATA(26.27) = 1IYZT(3
MATB(26) = -T2Y * DSIN(RLRZ1)
MATA 27,9; = -1.0D0
MATA(27,27) = 1.0DO0
b MATB(27) = 0.0D0
* MATA(27,19) = RBG3(2
* MATA(27,20) = -RBG3(1
* MATA(27,25) = 1IX2ZT(3
* MATA(27.26) = 1IVZT(3
! x MATA(27,27) = -1ZZT(3
* MATB(27) = - T22
GO TO 1112

INITIALIZE MATRIX ACCORDING TO CONSTRAINTS
CONSTRAINTS GROUP 1 WHEN ONLY LINK THREE IS IN MOTION

DO 118 I =1,18
Do 18 J = 1,27

{ MATA I,Jg = 0.0
MATA(I I} = 1.0
X MATB(I} ~ = 0.0
18 CONTINUE
118 CONTINUE

DO 181 I = 19,27
DO 81 J = 1,18
HATA(%,J) = 0.0

b 2RI 3B 3 b 3 b b b B X R R I B B I S P A P b I A S S

81 CONTINU
181 CONTINUE
GO TO 1111
CONSTRAINTS GROUP 2 WHEN LINK TWO AND THREE ARE IN MOTION
r DO 19 I =1,9
DO 191 J = 1,27
MATA I,J; = 0.0D0
MATA(I I) = 1.0 DO
MATB(I} ~ = 0.0DO
mATA 17,Jg = 0.0D0
MATA(18 J) = 0.0DO
MATB 17§ = 0.000
MATB(18 = 0.D0
MATA(J,17) = 0.0DO
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* CONSTRAINT GROUP 4

1112

481
48

841
84

1111

MATA(J,18) = 0.0DO

mATAil?,l?; = 1.0D0

MATA(18,18) = 1.0D0
CONTINUE

CONTINUE

CONTINUE
GO TO 1111

CONSTRAINTS GROUP 3 WHEN THREE OF THE LINKS ARE IN MOTION

DO 78 J = 1,27

MATA(7,J)" = 0.0DO
MATA(8,J) = 0.0DO

MATA(J.7) = 0.0DO

MATA(J 8) = 0.0DO

MATB(7 = 0.0D0

MATE(8) = 0.0DO

MATA(17,J) = 0.0DO

MATA(18,J) = 0.0D0

MATA(J,17) = 0.0DO

MATA(J 18) = 0.0DO

MATB(11) " = 0.000

MATB(18) = 0.0DO

MATA(26,J) = 0.0DO

MATA(27,J) = 0.0D0

MATA(J,26) = 0.0D0

MATA(J,27) = 0.0DO

MATB(26) ' = 0.0D0

MATB(27) = 0.0DO

MATA(7.7) = 1.000
MATA(8:8) = 1.0DQ
MATA(17,17) = 1.0D0
MATA(18,18) = 1.0D0
MATA(26,26}) = 1.0D0
MATA(27,27) = 1.0D0
CONTINUE

J=1,27
MATA I,J; = 0.0D0
MATA(I ,I) = 1.0 DO
MATB(I = 0.0D0
CONTINUE

CONTINUE
CALL EQUATION SOLVER PROGRAM FROM IMSL
CALL LEQT2F(MATA,M,N,IA MATB,IDGT,WKAREA,IER)
IF (IER .NE. 0) CALL ENDJOB

FIND LCOGX,LCOGY,LCOGZ,THETA VALUES,WX,WY,WZ
LINK ONE
AXl = MATB(4)
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VELX1 = INTGRL&O.,AXI)
LCOGX1 = INTGRL(X1,VELX1)
LCOGX(1) = LCOGX1

AY1 = MATB(S)

VELY1 = INTGRL&O.,AYI)
LCOGY1 = INTGRL(Yl,VELYl)
LCOGY(1) = LCOGY1

. VA = MATB(6)

VELZ1 = INTGRL(O.,AZ1)
LCOGZ1 = INTGRL(Z1,VELZ1)
LCOGZ(1) = LCOGZ1

WD1X = MATB(7)

W1X = INTGRL(0.,WD1X)
WDX(1) = WD1X

wi(1) = WlX

WD1Y = MATB(8)

W1y = INTGRL(0.,WD1Y)
woyél) = WD1Y

Wi(2) = WlY

WD1Z = MATB(9)

W1z = INTGRL(0.,WD1Z)
WDZ(1) = WD1Z

W1(3) = W1z

TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
SYSTEM FOR LINK ONE

MATIR(1,1) = DCOS(RLRZ1l) * DCOS(PTRY1)

MATIR(2,1) = DCOS(RLRZ1) * DSIN(PTRY1l) * DSIN(YWRX1l) -...
DSIN(RLRZ1) * DCOS(YWRX1)

MATIR(3,1) = DCOS(RLRZ1l) * DSIN(PTRY1l) * DCOS(YWRX1)
DSIN(RLRZ1) * DSIN(YWRX1)

MATIR(1,2) = DSIN(RLRZ1)*DCOS(PTRY1)

MATIR(2,2) = DSIN(RLRZ1) * DSIN(PTRYl) * DSIN(YWRX1)
DCOS(RLRZ1) * DCOS(YWRX1)

MAT1R(3,2) = DSIN(RLRZ1) * DSIN(PTRY1l) * DCOS{YWRX1)
DCOS(RLRZ1) * DSIN(YWRX1)

+

+

MAT1R(1,3) = -DSIN(PTRY1)
MAT1R(2,3) = DCOS{PTRY1l) * DSIN(YWRX1)
MATIR(3,3) = DCOS{PTRYl) * DCOS(YWRX1)

GET THE VELOCITIES OF LINK ONE IN BODY FIXED COORDINATE SYSTEM

DC 605 J =1,3
SUM1 = 0.0D0
DO 606 K = 1,3
SUM1 = SUM1 + MAT1IR(J.K) * W1(K)

606 CONTINUE
BRATE1(J) = siMl
605 CONTINUE

TRANSFORMATION MATRIX FROM BODY FIXED TO NON-ORTHOGONAL EULER
COORDINATE SYSTEM FOR LINK ONE

MATIT(1,1) = 0.0DO

MATIT(Z,1) = 1.0D0

MATIT(3,1) = 0.0D0

MATIT(1,2) = DCOSEYWRXlg

MATIT(2,2) = DTAN(PTRYL) * DSINiYWRXl)
MAT1T(3,2) = 1.0DO/DCOS(PTRY1) DSIN(YWRX1)
MAT1T(1,3) = -DSIN YWRXlg

MAT1T(2,3) = DTAN(PTRY1) * DCOS(YWRX1)
MAT1T(3,3) = 1.DO/DCOS(PTRYl) * DCOS(YWRX1)

GET THE VELOCITIES OF LINK ONE IN THE EULER COORDINATE SYSTEM
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DO 705 J = 1,3
SUM1 = 0.0DO
DO 706 K = 1,3
SUM1 = SUM1 + MAT1T(J,K) * BRATE1(K)
706 CONTINUE
RATEL(J) = suMl
705 CONTINUE
RATE1X = RATE1(1
RATELY = RATEL(2
RATE1Z = RATE1({3
* INTEGRATION OF THE VELOCITIES OF LINK ONE IN EULER COOR. SYSTEM
YWRX1 = INTGRL(O., RATE1X
PTRY1 = INTGRL(O. RATELY
RLRZ1 = INTGRL(-PI/2.,RATE1Z)
* CONVERT THE ANGLES TO DEGREES
YAWANX(1) = YWRX1 * RADEG
PTCANY(1) = PTRY1l * RADEG
ROLANZ(1) = RLRZ1 * RADEG
* GET THE DIRECTION COSINES FOR THE LINK ONE
DRCSY(1) = DCOS(RLRZI) * DSIN(PTRYl) * DCOS(YWRX1) +...
h DSIN(RLRZ1) * DSIN(YWRKL)
DRCSX(I) = DSIN(RLRZ1) * DSIN(PTRY1) * DCOS(YWRK1) -
DCOS(RLRZ1) * DSIN(YWRX1)
DRCSZ(1) = DCOS(PTRY1) * DCOS(YWRX1)
! DRCRAX(1) = DACOS(DRCSX(1
DRCRAY(1) = DACOS(DRCSY(1
7 DRCRAZ{1) = DACOS(DRCSZ{1
DRCANX(1) = DACOS(DRCSX(1)) * RADEG
DRCANY(1) = DACOS(DRCSY(1)) * RADEG
DRCANZ(1) = DACOS(DRCSZ(1)) * RADEG
[
* LINK TWO
9 AX2 = MATB(13)
VELX2 = INTGRL?O.,AXZ
LCOGX2 = INTGRL(X2,VELX2)
LCOGX(2) = GX2
AY2 = MAIB(14)
VELY2 = INTGRLéO ,AY2)
LCOGY?2 = INTGRL(Y2,VELY2)
LCOGY(2) = LCOGY2
] AZ2 = MATB( 15&
VELZ2 = INTGRLE ,AZ2)
LCOGZ2 = INTGRL(Z2,VELZ2)
LCOGZ(2) = LCOGZ2
WD2X = MATB(16
WX = INTGRL(0.,WD2X)
WDX(2) = WD2X
w2(1) = W2X
NDZY = uars§i7g
= INTGRL(0.,WD2Y)
wnyéz) = WD2Y
W2(2) = wzy
wnzz = B(18)
= INTGRL(O.,WDZZ)
wnz§2) = WD22
w2(3) = W22
* TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
* SYSTEM FOR LINK TWO
MAT2R(1,1) = DCOS(RLRZ2) * DCOS(PTRY2)
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608
607

708
707

HATZR(Z,I% = DCOS(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) -...
DSIN(RLRZZ2) * DCOS(YWRX2)

MAT2R(3,1) = DCOS(RLRZZ% * DSIN(PTRY2) * DCOS(YWRX2) +...
DSIN(RLRZ2) * DSIN(YWRXZ2)

MAT2R(1,2) = DSIN(RLRZ2) * DCOS(PTRY2)

HATZR(Z,Z% = DSIN(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) +...
DCOS(RLRZZ2) * DCOS(YWRXZ)

MAT2R(3,2) = DSIN(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) -...
DCOS(RLRZZ2) * DSIN(YWRXZ)

MAT2R(1,3) = -DSIN(PTRY2)
MAT2R(2,3) DCOS(PTRY2) * DSIN(YWRX2)
MAT2R(3,3) DCOS(PTRY2) * DCOS(YWRX2)
GET THE VELOCITIES OF LINK TWO IN BODY FIXED COORDINATE SYSTEM

DO 607 J = 1,3
SUML = 0.0DO
DO 608 K = 1,3
SUM1 = SUMI + MAT2R(J,K) * W2(K)
CONTINUE
BRATE2(J) = SUM1
CONTINUE

TRANSFORMATION MATRIX FROM BODY FIXED TO NON~ORTHOGONAL EULER
COORDINATE SYSTEM FOR LINK TWO

MAT2T(1,1) = 0.0DO

MAT2T(2,1) = 1.,0D0

MAT2T(3,1) = 0.0DO

MAT2T(1,2) = DCOSéYWRXZ;

MATZ2T(2,2) = DTAN(PTRYZ) * DSINiYWRXZ)
MAT2T(3,2) = 1.0DO/DCOS(PTRY2) DSIN(YWRX2)
MAT2T(1.,3) = -DSINgYWRXZ;

MAT2T(2,3) = DTAN(PTRY2) * DCOS({YWRX2)
MATZT(3,3) = 1.0D0/DCOS(PTRY2) DCOS (YWRX2)

GET THE VELOCITIES OF LINK TWO IN THE EULER COORDINATE SYSTEM

po 707 J = 1,3
SuMl = 0.0D0
DO 708 K = 1,3
SUM1 = SUM1 + MAT2T(J,K) * BRATE2(K)
CONTINUE

RATE2(J) = suMl
CONTINUE
RATEZ2X = RATEZ2(1
RATE2Y = RATE2(2
RATE2Z = RATEZ2(3

INTEGRATION OF THE VELOCITIES OF LINK TWO IN EULER COOR. SYSTEM

YWRX2 = INTGRL 0.,RATE2X§
PTRYZ2 = INTGRL(O.,RATE2Y
RLRZZ = INTGRL(-PI/2.,RATE2Z)

CONVERT THE ANGLES TO DEGREES

YAWANX(2) = YWRX2 * RADEG
PTCANY(2) = PTRY2 * RADEG
ROLANZ(2) = RLRZ2 * RADEG

GET THE DIRECTION COSINES FOR THE LINK TWO

DRCSY(2) = DCOS(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) -...
DSIN(RLRZ2) * DCOS(YWRX2)

DRCSX(2) = DSIN(RLRZ2) * DSIN(PTRY2)*DSIN(YWRX2) +...
DCOS(RLRZZ) * DCOS(YWRXZ)

DRCSZ(2) = DCOS(PTRY2) * DSIN(YWRX2)
DRCRAX(Z) = DACOS(DRCSX(2))
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DRCRAY&Z} = DACOS&DRCSYézgg
DRCRAZ(2) = DACOS(DRCSZ(2
DRCANX(2) = DACOS(DRCSX(2)) * RADEG
DRCANY (2} = DACOS(DRCSY{(2)) * RADEG
DRCANZ(2) = DACOS(DRCSZ(2)) * RADEG
JX1 = (L(1,1 + L 1 2 * DCOS (DRCRAX(1
JYl = (L(1,1 * DCOS (DRCRAY({1
JzZl = (L(i,l * DCOS(DRCRAZ(1
LINK THREE
6 AX3 = MATB(22)
VELX3 = INTGRLSO ,AX3)
LCOGX3 = INTGRL(X3,VELX3)
LCOGX(3) = LCOGX3
AY3 = (23)
VELY3 = INTGRL?O ,AY3)
LCOGY3 = INTGRL(Y3,VELY3)
LCOGY(3) = LCOGY3
AZ3 = MATB(24)
VELZ3 = INTGRL§0 ,AZ3)
1LC0G2Z3 = INTGRL(Z3,VELZ3)
LCOGZ(3) = LCOGZ3
WD3X = MATB(25)
W3X = INTGRL(O.,WD3X) -
WDX(3) = WD3X
W3(1) = W3X
WD3Y = MATB(26)
W3Y = INTGRL(O.,WD3Y)
wnygs) = WD3Y
W3(2) = W3Y
WD3Z = MATB(27
W32 = INTGRL(0.,WwD32)
WDZ(3) = WD3Z
W3(3) = W3Z
* TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
* SYSTEM FOR LINK THREE

MAT3R(1,1) = DCOS(RLRZ3) * DCOS(PTRY3)

MAT3R(2,1) = DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) -...
DSIN(RLRZ3) * DCOS(YWRX3)

MAT3R(3,1) = DCOS(RLRZ3) * DSIN(PTRY3)
DSIN(RLRZ3) * DSIN(YWRX3)

MAT3R(1,2) = DSIN(RLRZ3) * DCOS(PTRY3)

MAT3R(2,2) = DSIN(RLRZ3% * DSIN(PTRY3)
DCOS(RLRZ3) * DCOS(YWRX3)

*

DCOS(YWRX3) +...

*

DSIN(YWRX3) +...

MAT3R(3, 2; DSIN(RLRZ3) * DSIN(PTRY3) * DCOS({YWRX3) -...
DCOS(RLRZ3) * DSIN(YWRX3)
MAT3R(1,3) = -DSIN(PTRY3)
MAT3R(2,3) = DCOS(PTRY3) * DSIN(YWRX3)
MAT3R(3,3) = DCOS(PTRY3) *DCOS(YWRX3)
* GET THE VELOCITIES OF LINK THREE IN BODY FIXED COORDINATE SYSTEM
DO 609 J = 1,3
SUMl1 = 0.0D0
DO 610 K = 1,3
SUMl = SUM1 + MAT3R(J,K) * W3(K)
610 CONTINUE
BRATE3(J) = sUMl
609 CONTINUE
* TRANSFORMATION MATRIX FROM BODY FIXED TO NON-ORTHOGONAL EULER
* COORDINATE SYSTEM FOR LINK THREE
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MAT3T(1,1) = 0.0DO
MAT3T(2,1) = 1.0D0
MAT3T(3,1) = 0.0D0
MAT3T(1,2) = DCOSéYWRX3;
MAT3T(2,2) = DTAN(PTRY3) * DSINiYWRXS)
MAT3T(3,2) = 1.0D0/DCOS(PTIRY3) DSIN(YWRX3)
MAT3T(1.3) = -DSINSYWRX3§
MAT3T(2,3) = DTAN(PTRY3) * DCOS&YWRX3)
MAT3T(3,3) = 1.0DO/DCOS(PTRY3) DCOS (YWRX3)
* GET THE VELOCITIES OF LINK THREE IN THE EULER COORDINATE SYSTEM

DO 709 J = 1,3

SUM1 = 0.0DO

DO 710 K = 1,3
SUM1 = SUM1 + MAT3T(J,K) * BRATE3(K)

710 CONTINUE
RATE3(J) = SUM1
709 CONTINUE
RATE3X = RATE3(1
RATE3Y = RATE3(2
RATE3Z = RATE3(3
* INTEGRATION OF THE VELOCITIES OF LINK THREE IN EULER COOR. SY3TEM
YWRX3 = INTGRL(O.,RATE3X
PTRY3 = INTGRL(O.,RATE3Y
RLRZ3 = INTGRL(-PI/2.,RATE32Z)
* CONVERT THE ANGLES TO DEGREES
YAWANX(3) = YWRX3 * RADEG
PTCANY(3) = PTRY3 * RADEG
ROLANZ(3) = RLRZ3 * RADEG

* GET THE DIRECTION COSINES FOR THE LINK THREE

DRCSY(3) = DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) -...
DSIN(RLRZ3) * DCOS(YWRX3)

DRCSX(3) = DSIN(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) +...
DCOS(RLRZ3) * DCOS(YWRX3)

DRCSZ(3) = DCOS(PTRY3) * DSIN(YWRX3)

DRCRAX(3) = DACOS(DRCSX(3
DRCRAY(3) = DACOS(DRCSY(3
DRCRAZ(3) = DACOS(DRCSZ(3
DPCANX(3) = DACOS(DRCSX(3)) * RADEG
DRCANY(3) = DACOS(DRCSY(3)) * RADEG
DRCANZ(3) = DACOS(DRCSZ{3)) * RADEG
JX2 = JX1 + (L(2,1) + L(2,2)) * DCOS(DRCRAX(2
JY2 = J¥1 + (L{2.1) + L(2.,2)) * DCOS(DRCRAY(2
Jz2 = Jz1 + (L(2.1) + L(2.2)) * DCOS(DRCRAZ(2
TIPX = JX2 + (L(3,1) + L{3,2)) * DCOS(DRCRAX(3
TIPY = JY2 + (L{3.1) + L(3.2)) * DCOS(DRCRAY(3
TIPZ = JZ2 + {L(3,1) + L(3.,2)) * DCOS(DRCRAZ(3
DYNAMIC
NOSORT
* INPUT TORQUE AT JOINTS
TOZ = A * SIN (W * TIME + P
TIX =-10 * SIN (W * TIME + P
T2X = A * SIN (W * TIME + P
END
STOP
FORTRAN
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SUBROUTINE TO COMPUTE THE

- o v

C ? T OF
SUBROUTINE CPROD(VECTA,VECTB,MI,MJ, MK)
IMPLICIT REAL*8 (?-

2)
DIMENSION VECTA(3),VECTB(3)
MI = VECTA(2) * VECTB(3) - VECTA(3) * VECTB(2
MJ = VECTA(3) * VECTB(l) -~ VECTA(1l) * VECTB(3
RETJ§§ = VECTA{l) * VECTB(2) - VECTA(2) * VECTB(l

END

-~— e — = e



APPENDIX C

THREE DIMENSIONAL SIMULATION PROGRAM
INVESTIGATION OF SINGULAR CONFIGURATION

TERMINAL
METHOD ADAMS

PRINT .05,ERROR,ANG12Z,ANG232Z

CONTROL FINTIM = 4.0, DELMAX =.1, DELPRT = .05

SAVE .05, ERROR,ANG12X,ANG12Y,6ANG12Z,THETAB,THETAD,ANG23X,ANG23Y,...
ANG23Z, IVYT(2),IXXT(2).122T(2}
GRAPH(DE=TEK618) TIME,ANGI12X
GRAPH(DE=TEK618) TIME,ANG12Y
- GRAPH(DE=TEK618) TIME, ANG12Z
GRAPH(DE=TEK618) TIME,ANG23X
GRAPH(DE=TEK618) TIME . ANG23Y
GRAPH(DE=TEK618) TIME,ANG23Z
GRAPH(DE=TEK618) TIME ., THETAB

GRAPH(DE=TEK618 TIME,IYYT(Z),IXXT(Z;,IZZT'Z)
D DIMENSION MATA(27 27) MASS(3,2) L(3 5),RX(3,2),RY$3,2§,RZ(3,2)
D DIMENSION IXX(3,2$,IXZ(3,2),IXY(3,2§,IYY(3,2),IYZ 3,2).122(3.2)
D DIMENSION MATlR§3,3g,MAT2R23,33,MAT R(3-3)
D DIMENSION MAT1T(3,3) MAT2T(3,3) MAT3T(3,3
D INTEGER IER,I,J,M.K,P,N,IA, IDGT,A
EXCLUDE IA,IDGT,IER I, J.M,K.P,N A
ARRAY MATB(27) LCOGK(3),LCOGY (3} LCOGZ(3)
ARRAY VECTAQ( 5,VECTBO(3% VECTAL(3),VECTB1(3) VECTA2(3),VECTB2(3)
ARRAY WDX(3),WDY(3),WDZ( 5,w1233,w2(3),w3(3),MATc227),DQ(z7)
ARRAY RATEL(3) RATEZ(3) RATES(3) BRAIEL(3) BRATE2(3), BRATE3(3)
ARRAY RBGL(3),RAG1(3) RBG2(3) RAG2(3),RBG3(3)
ARRAY SUIMHDK(3) SUMHDY(3) SUDZ(3) HDX(2) HDY(2) HDZ(2) WKAREA(850)
ARRAY IXXT(3),IVYT(3) 12ZT(3),IXYT(3),Ix2T(3),1v2T(3)
ARRAY YAWANX(3),PTCANY(3),ROLANZ(3
ARRAY DRCANX(3),DRCANY(3) DRCANZ(3
ARRAY LRCRAX(3);DRCRAY(3),DRCRAZ(3
ARRAY DRCSX(3),DRCSY(3),DRCSZ(3)
D DATA MATA/729 * 0.0DO
INITIAL
* INPUT PARAMETER CONSTANTS
A = 3.0D0
P = 0.0D0
W =PI / 2.0D0
IDGT = 3
G=0.0D0
N=27
M=1
1A =27
* INPUT JOINT LOCATIONS IN METERS
JX0 = 0.0D0
JY0 = 0.0D0
JzZ0 = 0.0D0
JX1 = 0.0D0
JY1 = 0.0D0
Jz1 = 1.0D0
* USE THE NEXT SET OF JOINT TWO COORDINATES FOR CASE A
JX2 = 0.0D0
JY2 = 1.0D0
Jz2 = 1.0D0
* USE THE NEXT SET OF JOINT TWO COORDINATES FOR CASE B
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¥4 kXX H X NF

JxX2 = 1.0D0
JY2 = 0.0D0
JZ2 = 1.0D0
USE THE NEXT SET OF JOINT TWO COORDINATES FOR CASE C
JX2 = 0.0D0
J¥2 = 0.0D0
JZ2 = 2.0D0

INPUT DISTANCE FROM CENTER OF LINK TO CENTER OF MASS FOR
EACH LINK ENDS

L(1,1) = 0.50D0
L(1,2) = 0.50D0
L(2,1) = 0.50D0
L(2,2) = 0.50D00
L(3,1) = 0.50D0
L(3,2) = 0.50D0
INPUT MASS AT LINK ENDS IN KILOGRAMS
Mass(l,1) = 2.5D0
MASS(1,2) = 2.5D0
MASS(2,1) = 2.5D0
MasSS(2,2) = 2.5D0
MASS(3,1) = 2.5D0
MASS(3,2) = 2.5D0
INPUT OMEGA AND OMEGA DOT -
DO 30I=1,3
W1l(I = 0.0D0
W2(I = 0.0D0
W3(I = 0.0D0
WDX = 0.0D0
WDY(I = 0.0D0
WDZ(I = 0.0D0
CONTINUE
INPUT LOCATION OF LINK CENTERS OF GRAVITY
LINK ONE
LCOGX(1) = 0.0D0
X1 = LCOGX(l)
LCOGY(1l) = 0.0DQ
Yl = LCO Y 1)
LCOGZ(l) =
= LCOGZ(I)

NEXT SET FOR LINK TWO AND THREE TO USE FOR CASE A
LCOGX(2) = 0.0D0
X2 = LCOGX

= LCOGZ(Z%

¥3 = LCOGY(3)
LCOGZ(3) =
23 = LCOGZ(3)

NEXT SET FOR LINK TWO AND THREE TO USE FOR CASE B
LCOGX(2) = 0.5D0
X2 LCO

LCOGZ(2) =
Z2 = LCOG z§2)
LCOGX(3) = 1

X3 = LCOGX(3)
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* LCOGY(3)_= 0.0D0
* Y3 = "LCOGY(3)
* LC0GZ(3) = 1.0D0
* 2509283 1 20d2(3)
* NEXT SET FOR LINK TWO AND THREE TO USE FOR CASE C
* LCOGX(2) = 0.0D0
* X LCOGX(2)
* LCOGY(2) = 0.0DQ
* = \Leos¥(2)
* LC0GZ(2) = 1500
* 2(2)
* T20cx(3) = 0000
* =" "LCOGX(3)
* LCOGY(3) = 0.0D0
* ¥3 = LCOG¥(3)
* LC0GZ(3) = 2.5D0
* z3 = 'LC0GZ(3)
* INPUT MASS OF EACH LINK IN KG AND COMPUTE WEIGHTS IN NEWTONS
MASS1 = 5.0D0
MASS2 = 5.0D0
MASS3 = 5.0D0
WGl = MASS1*G
WG2 = MASS2%G
WG3 = MASS3*G -
* INPUT ACCELERATION OF JOINT ZERO
AQX = 0.0D0
AQY = 0.0DO
A0Z = 0.0D0
* INITIALIZE MATRIX A AND B TO ZERO
DO 40 I =1,
5o 50 9 &5 27
MATA(I,J) = 0.0DO
DQ(I) = 0.0D0
MATC(I) = 0.0D0
50 CONTINUE
40 CONTINUE
DO 60 I = 1,27
MATE(1) = 0.0D0
60 CONTINUE
x INITIALIZE THE INITIAL VELOCITIES AND TRANSFORMATION MATRICIES
DO 63 I = 1,3
DO 64 J = 1,3
RATEL(I = 0.0D0
RATE2(I = 0.0D0
RATE3(I = 0.0D0
BRATE1(I) = 0.0DO
BRATE2{I) = 0.0DO
BRATE3(I) = 0.0DO
MATIT (I,J) = 0.0DO
MAT2T (I,J) = 0.0DO
MAT3T (I,J) = 0.0DO
MATIR (I,J) = 0.0DO
MAT2R (I,J) = 0.0DO
MAT3R (I,J) = 0.0DO
64 CONTINUE
63 CONTINUE
DERIVATIVE
NOSORT

CALL ERRSET (208,256,-1,1,1)
stsng =0
CALL UERSET(LEVELQ,LEVLDQ)
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*

INITIALIZE MATRIX A AND B TO ZERO

DO 70 I =1, 27
DO 80 J = 2
MATA(I,J) = 0.0DO
CONTINUE
CONTINUE

1,27
HATB(I) = 0.0D0
%} = 0.0D0
CONTINUE

INPUT JOINT EQUATIONS
JOINT ZERO EQUATIONS
AB = AGl + (WDl X RB/Gl) + W1 X (W1 X RB/GI)

VECTAO = WDX(1
VECTAO = WDY(1
VECTAO(3) = WDZ(1 -
RBG1(1l) = JXO0 - LCOGX(1l
RBGl(2) = JY0O - LCOGY(l
~ RBG1(3) = JZ0 - LCOGZ(1
CALL CPROD(VECTAO,RBG1,MIAO,MJAO,MKAO)
VECTAO(1) = W1(l
VECTAO(2) = W1(2
VECTAO(3) = W1(3
CALL CPROD(VECTAO,RBG1,MIBO,MJBO,MKBO)
VECTBO(1) = MIBO
VECTBO(2) = MJBO
VECTBO(3) = MKBO

CALL CPROD(VECTAO,VECTBO,MICO,MJCO,MKCO)
JOINT ONE EQUATIONS---
AR = AGl + (WDl X RA/Gl) + W1 X (W1 X RA/G1)

VECTAl1(l) = WDX(1
VECTAl1(2) = WDY(1l
VECTAL1(3) = WDZ(1
RAGL(l) = JX1 - LCOGX(1
RAGl1(2) = JY1 - LCOGY(1l
RAGLl(3) = J21 - LCOGZ(1l

CALL CPROD(VECTALl,RAGL,MIAl,MJAl ,MKAL)

VECTAL(l) = WI(1
VECTAL(2) = W1l(2
VECTAL(3) = W1(3
CALL CPROD (VECTALl,RAGL,MIB1,MJB1,MKB1)
VECTB1(1l) = MIB1
VECTB1(2) = MJB1
VECTB1(3) = MKB1

CALL CPROD (VECTAl,VECTB1,6MIC1,MJC1,MKC1)
AB = AGZ + (WD2 X RB/G2) + W2 X (W2 X RB/G2)

VECTAL1(1l) = WDX(2
VECTAl(2) = WDY(2
VECTAl1(3) = WDZ(2
RBG2(1) = JX1 - LCOGX(2
RBG2(2) = JY1 - LCOGY(2
RBG2(3) = J21 - LCOGZ(2
CALL CPROD (VECTAl,RBG2,MIA2,MJA2,MKA2)
VECTAlgl; = W221;
VECTAL(Z2) = W2(2
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VECTAL(3) = W2(3)
CALL CPROD (VECTAl,RBG2,MIB2,MJB2 MKBZ)

VECTB1(1l) = MIB2
VECTB1(2) = MJB2
VECTB1(3) = MKB2

CALL CPROD (VECTAl,VECTB1,MIC2,MJC2,6MKC2)

JOINT TWO EQUATIONS
AA = AG2 + (WD2 X RA/G2) + W2 X (W2 X RA/G2)

VECTA2(1) = WDX(2
VECTA2(2) = WDY(2
VECTA2(3) = WDZ(2
RAG2(1) = JX2 ~ LCOGX(2
RAG2(2) = J¥2 - LCOGY(2
RAGZ(3) = JZ2 ~ LCOGZ(2

CALL CPROD (VECTA2,RAG2,MIA3,MJA3,MKA3)
VECTA2(1) = W2(1
VECTA2(2) = W2(2
VECTA2(3) = W2(3

CALL CPROD (VECTA2,RAG2,MIB3,MJB3,MKB3)
VECTB2(1) = MIB3

. VECTB2(2) = MJB3

VECTB2(3) = MKB3

CALL CPROD(VECTAZ2,VECTB2,MIC3,MJC3,MKC3)
AB = AG3 + (WD3 X RB/G3) + W3 X (W3 X RB/G3)

VECTAZ2(1) = WDX(3
VECTAZ(2) = WDY(3
VECTAZ2(3) = WDZ(3
RBG3 12 = JX2 - LCOGX(3
RBG3(2) = JY2 ~ LCOGY(3
RBG3(3) = JZ2 ~ LCOGZ(3

CALL CPROD (VECTA2,RBG3,MIA4,MKA4,6MKA4)
VECTAZ(1) = W3(1
VECTAZ2(2 W3(2
VECTAZ (3 W3(3

CALL CPROD (VECTA2,RBG3,MIB4,MJB4,MKB4)
VECTBZ%I; = MIB4

VECTBZ2(2 MJB4
VECTB2(3 MKB4

CALL CPROD (VECTA2,VECTB2,MIC4,MJC4,MKC4)
SUM OF MOMENTS EQUATIONS
DO 100 I =1,3

COMPUTE HX,HDOT X,HY,HDOT Y, HZ,HDOT Z
RX(I,1) = -L(I,1) * DCOS(DRCRAX I
RX(I,2) = L(I,2) * DCOS(DRCRAX I
RY(I,1) = -L{I,1} * DCOS(DRCRAY(I
RY(I,2) = L(I,2) * DCOS(DRCRAY({I
RZ(I,1) = -L(I,1) * DCOS(DRCRAZ(I
RZ(I,2) = L(I,2) * DCOS{DRCRAZ(I
IXXéI,l; = MASS 1,1; * 2§RY§I,1 * Rygr 1 + Rzgr 1; * Rzgx,lgg;
IXX(I,2) = MASS(I,2) * ((RY(I,2) * RY(I,2 f + (RZ(I,2) * Rz(I,2
IXXT(I) = 1xx§ 1Y+ 1Rx(T, 29
IF (IXXT(I) .LE. .020) THEN
IXXT(I) = .020
ELSE
IXXT(I) = IXXT(I)
END iF
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100

IXY(I,1) = MASS(I,1) * RX(I,1) * RY(I,1
IXY 1,2; = Massgr,z; * ax§1,2§ * Rygr,z;
IXYT(1) = Ixv(1,1) '+ IX¥(I.2 :
IXZ(I,1) = MASS(I,1) = RZ(I,1) * RX(I,1
Ixzir,zg = Masszx,zg * Rng,Zg * Rx$1,23
IXZT(1)’ = 1X2(1,1) + 1XZ(I,2
- - % - *
HDX(1) T WDR(L) & HERUT-3)C WDELE) ¢ BEE(E:3) - uBRLE) < BRUEE
: = %* * I'4
T s asstL ) X UERD ) & BRI ¢ (R K R
1vyT(1) = 1vv(I,1) + 1v¥(I,2}
IF (IYYT(I) .LE. .020) THEN
IYYT(I) = .020
ELSE
§§ET§§) = IYYT(I)
I¥Z(I,1) = MASS(I,1) * RY(I,1) * RZ(I,1
Iyzgx,zg = MAssgI,Z; * RY§I,2§ * stx,zg
1vzT(1)’ = 1vz(1,1) + 1v2(I,2
HDYH = woyzxg * Iwgr,lg - wnxm * IXY§1,1; - wnzm * nrzsx,lg
HDY(2) = WDY{I} * Ivy(I.2) - WDX(I) * IXY(I.2) - WDZ({I) * IYZ(I,2
IZZ(I,1) = MASS(I,1) * Rng,lg * Rxgr,l + iRYEI'I; * RYéI,l;gg
Izzfx,zg = MAssgr,zg * SERX I/2) * RX :,232 + (RY(I.2) * RY(I.2
IZZT§I) = 122(1,13 + 122(1,2)
(L) gl o0 T
Eé%% ;) = 1ZZT(I)
HD2{3) = WDZ(ly & IZE(TA) D BK(E) ¢ BELE v ¢ I
- suunnxg:; = an§1§ + Hoxgzs
SUMHDY(I) = HDY(1) + HDY(2
SUMHDZ(I) = HDZ(1) + HDZ(2)
CONTINUE

ENTER CONSTANTS INTO MATRIX A
LINK ONE
SUM OF FORCES IN THE X DIRECTION

I

MATA(1.10) = -1.0D0
SUM OF FORCES IN Y DIRECTION

MATA%Z,Z? = 1.0D0

MATA(2.5) = MASS1

MATA(2.11) = -1.0D0
SUM OF FORCES IN Z DIRECTION

MATA§3,3g = 1.000

MATA(3.6) = MASS1

MATA(3,12) = -1.0D0

EQUATIONS AT JOINT ZERO
IN THE X DIRECTION

MATA(4,4) = 1.0D0
MATA(4,8) = RBGIE3;
MATA(4,9) = -RBG1(2
IN THE Y DIRECTION
MATA(5,5) = 1.0DO0
MATA(5,7) = -RBG1£33
MATA(5,9) = RBGIL(1l
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+ IXZT
+ IYZT
- I122T

4

IN THE Z DIRECTION
MATALE,8) = 1.0m0
HATA{6,7§ = RBGlszg
MATAl6.8) = -RBGI{1

SUM OF MOMENTS
MATA(7,2) = RBG1(3
MATA(7.3) = -RBG1(2
MATA(7.7) = -IXXT(1
MATA(7.8) = IXYT(1
MATA(7.9) = Ixz2T(1
MATA 7,113 = -RAG1(3
MATA(7.12) = RAGL{2
MATA(8,1) = -RBG1(3
MATA(8 3} = RBGI(1
MATA(8.7) = IXYT(1
MATA(8.8) = -IYYT(1
MATA(8.9) = IvZT(1
MATA 8,10; = RAG1(3
MATAl8 12 = -RAGI(1
MATA(9,1) = RBG1(2
MATA(9 2} = -RBG1(1
MATA(9.7) = IxzT{1
MATA(9.8) = TIYZT(1
MATA(9.9) = -IZZT(1
MATA 9,10; = -RAGL(2
MATA(9.11) = RAGI(1

LINK TWO

SUM OF FORCES IN X DIRECTION
MATA(10,10) = 1.0DO
MATA(10.13) = MASS2
MATA{10.19) = -1.0D0

SUM OF FORCES IN THE Y DIRECTION
MATA(11,11) = 1.0D0
MATA(11,14) = MASS2
MATA(11.20) = -1.0D0

SUM OF FORCES IN THE Z DIRECTION
MATA(12,12) = 1.0D0
MATA(12.15) = MASS2
MATA{12.21) = -1.0D0

EQUATIONS AT JOINT ONE

IN THE X DIRECTION
MATA(13,4) = -1.0D0
MATA(13.8) = -RAGI§33
MATA(13.9) = RAGI(2
MATA(13,13) = 1.0DO
MATA(13.17) = RBG223;

~ MATA{13,18) = -RBGZ(2

IN THE Y DIRECTION
MATA(14,5) = -1.0DO
MATA(14.7) = RAG1$3
MATA(14.9) = -RAG1{1
MATA(14.14) = 1.0D0
MATA(14.16) = -RBGZSB
MATA(14,18) = RBG2!{1

IN THE Z DIRECTION
MATA(15,6) = -1.0D0
MATA(15.7) = -RAGI§2
MATA(15.8) = RAGL(1
MATA(15.1 g = 1.0D0
MATA(15.16) = RBG2(2)
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MATA(15,17) = -RBG2(1)
SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE X.Y.Z DIRECTIONS

MATA(16,11) = RBG2(3
MATA(16,12) = -RBG2(2
MATA(16,16) = -IXXT(2
MATA(16,17) = IXYT(2
MATA(16,18) = IXZT(2
MATA(16,20) = -RAGZ2(3
MATA(16,21) = RAGZ2(2
MATA(17,10) = -RBG2(3
MATA(17,12) = RBG2(1
MATA(17,16) = IXYT(2
MATA(17,17) = -IYYT(2
MATA(l17,18) = 1YZT(2
MATA(17,19) = RAGZ(3
MATA(17,21) = -RAGZ(1
MATA(18,10) = RBG2(2
MATA(18,11) = -RBG2(1
MATA(18,16) = IXZT(2) + IXZT(3
MATA(18,17) = IY2T(2) + IYZT(3
MATA(18,18) = -122T(2) - I22T(3
MATA(18,19) = -RAG2(2
MATA(18,20) = RAG2(1
LINK THREE

SUM OF FORCES IN THE X DIRECTION

HATA219,193 = 1.0D0
MATA(19,22) = MASS3

SUM OF FORCES IN THE Y DIRECTION

MATA220,203 = 1.0D0
MATA(20,23) = MASS3

SUM OF FORCES IN THE Z DIRECTION

MATAng,Zl; = 1.0D0
MATA(21,24) = MASS3

EQUATIONS AT JOINT TWO
IN THE X DIRECTION

MATA(22,13) = -1.0D0
MATA(22,17) = -RAG2 3;
MATA(22,18) = RAG2(2
MATA(22,22) = 1.0D
MATA(22,26) = RBG3§33
MATA(22,27) = -RBG3(2

IN THE Y DIRECTION
MATA(23,14) = -1,0D0
MATA(23,16) = RAG2 3;
MATA(23,18) = -RAG2(1
MATA(23,23) = 1.0D
MATA(23,25) = -RBG3§3
MATA(23,27) = RBG2(1

IN THE Z DIRECTION
MATA(24,15) = -1.0D0
MATA(24,16) = -RAGZ§2
MATA(24,17) = RAG2(1
MATA(24,24) = 1.0D0
i © el

SUM OF MOMENTS EQUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS
MATA(25,20) = RBG3(3
MATA{25,21) = -RBG3(2
MATA(25,25) = -IXXT(3
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MATA(25,26) = IXYI(3)
MATA§25,275 = Ixzrzsﬁ
MATA(26,19) = -RBG3(3
MATA(26,21) = RBG3(l
MATA(26,25) = IXYT(3
MATA(26,26) = -IYYT(3
MATA(26,27) = 1I¥ZT(3
MATA(27,19) = RBG3(2
MATA(27,20) = -RBG3(1
MATA(27,25) = IX2T(3
MATA(27,26) = IYZT(3
MATA(27,27) = -12ZT(3
GO TO 1112

INITIALIZE MATRIX ACCORDING TO CONSTRAINT
CONSTRAINTS GROUP 1 WHEN ONLY LINK THREE IS IN MOTION

nnuno
~3

18 CONTINU
118 CONTINUE

DO 181 I = 19 27

1 CONTINUE '
181 CONTINUE
GO TO 1111
CONSTRAINTS GROUP 2 WHEN LINK TWO AND THREE ARE IN MOTION
DO 19 I =1,9
DO J=1,27
MATA I, J = 0.0D0
MATA I I = 1.0 DO
MATB I = 0.0D0
MATA(17, J = 0.0D0
MATA 18 J = 0.0D0
MATB = 0.0D0
MATB = 0.D0
MATA(J,17) = 0.0DO
MATA(J,18) = 0.0DO
MATA$I7’l7g = 1.0D0
MATA(18,18) = 1.0D0
191 CONTINUE
*19 CONTINUE
DO 91 I = 10 27
DO 92 J = 9
MATA(I, J) 0.0
92 CONTINUE
91 CONTINUE
GO TO 1111

CONSTRAINTS GROUP 3 WHEN THREE OF THE LINKS ARE IN MOTION
DO 78 J = 1,27

P b I B b P B . S I I N 2 b b P B b B b b B b b S b b b i b b b S I *};—**X'******ﬁ-* * % *

MATA(7,J) = 0.0DO
MATA(8'J) = 0.0DO
MATA(J.7) = 0.0D0
MATA(J.8) = 0.0DO
MATB 72 = 0.0D0
MATB(8 = 0.0D0
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*
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*
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*
*
*
*
*
*
*
*
*
*
*

MATA(17,J) = 0.0DO
MALA(LlG,Jd) = VU.VLU
MATA J,17§ = 0.0D0
MATA(J,18) = 0.0D0
MATB 173 = 0.0D0
MATB(18 = 0.0DC
MATA(26,J) = 0.0DO
MATA(27,J) = 0.0D0
MATA(J,26) = 0.0D0
MATA(J,27) = 0.0D0
MATB 26; = 0.0D0
MATB(27 = 0.0D0
MATA 7.7; = 1.0D0
MATA(8,8 = 1.0D0
MATA(17,17) = 1.0D0
MATA(18,18) = 1.0D0
MATA(26,26) = 1.0D0
MATA(27,27) = 1.0D0
CONTINUE
CONSTRAINT. GROUP 4 THE FIRST LINK IS CONSTRAINED TO ROTATE IN Z DIR.
1112 DO 48 I = 4,8
DO 481 J = 1,27
MATA I,Jg = 0.0D0
MATA(I , I) = 1.0 DO
MATB(I = 0.0D0
481 CONTINUE
CONTINUE
DO 84 I 27
DO 841 J =

4,8
MATA(I, J) = 0.0

841 CONTINUE

CONTINUE

USE THE FOLLOWING SET OF INFORMATION WHEN THE ANGULAR VELOCITY IS
IN X DIRECTION REGARDLESS OF THE INITIAL CONFIGURATION

ENTER THE THEQRITICAL VALUES ASSUMING THE LINK TWO AND THREE ARE
IN PLANAR MOTION AND ANGULAR VELOCITY IS IN THE X DIRECTION

LINK T
THEORITICAL ANGULAR VELOCITIES (APPLIED IN THE X DIRECTION)
MATB = 0.0D0
MATB(17] = 0.0B0
MATB(16) = -((PI**3) / 8.0D0) * DSIN(W * TIME)
THDDOT = MATB(16)
THIDOT = INTGRL((PT**2)/4.,THDDOT)
THETRB = INTGRL(O.,THIDOT)
THETAB = THETRB * RADEG
LINEAR VELOCITIES
MATB(1%) = -{THDDOT % RBGZ(2)) + (THIDOT A% 2) % RBG2(3)
MATB(14) = (THDDOT * RBGZ(3)) + (THTDOT ** 2) * RBG2(2
MATB(13) = 0.0DO |
LINK THREE
ANGULAR VELOCITIES
MATB(27) = 0.0DO
MATB(26) = 0.0DO
MATB(25) = 0.0DO
LINEAR VELOCITIES
MATB(24) = MATB(12)+(THDDOTIRAG2(2))- (THTDOTY*2) % {RAG2(3))
MATB(23) = MATB(14)-(THDDOT*RAGZ({3))-(THTDOT**2)*(RAGZ(2
MATB(22) = MATB(13

END OF THE INFORMATION FOR X DIRECTION
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USE THE FOLLOWING SET OF INFORMATION WHEN THE AMGULAR VELOCITY IS
IN THE Y DIRECTION REGARDLESS OF THE INITIAL CONFIGURATION

ENTER THE THEORITICAL VALUES ASSUMING THE LINK TWO AND THREE ARE
IN PLANAR MOTION AND ANGULAR VELOCITY IS IN THE Y DIRECTION

LINK TWO
THEORITICAL ANGULAR VELOCITIES(APPLIED IN THE Y DIRECTION )
MATB(18) = 0.0DO
MATB(17) = ((-PI**3)/8)*SIN(W*TIHE)
MATB(16) = 0
THDDOT = =
THTDOT = INTGRLEéPI**Z)/4 , THDDOT)
THETRB = INTGRL(Q,INTGRL(PI**2/4. ,THDDOT))
THETAB = THETRB * RADEG
LINEAR VELOCITIES
§2¥g§%2§ = (THBDOT * RBG2(1)) + (THIDOT ** 2) * RBG2(3)
MATB(13) = -(THDDOT * RBG2(3)) + (THTDOT ** 2) * RBG2(1)
LINK THREE
ANGULAR VELOCITIES
MATB(27) = 0.0DO
MATB(26) = 0.0DO
MATB(25) = 0.0DO
LINEAR VELOCITIES
MATB(24) = MATB - (THDDOT*RAG2(1) ) - (THTDOT**2)*(RAG2(3))
MATB(23) = MATB 4
MATB(22) = MATB(13)+(THDDOT*RAG2(3))-(THTDOT**2)*(RAG2(1))

END OF THE INFORMATION FOR THE Y DIRECTION

USE THE FOLLOWING SET OF INFORMATION WHEN THE ANGULAR VELOCITY IS
IN THE Z DIRECTION REGARDLESS OF THE INITIAL CONFIGURATION

ENTER THE THEORITICAL VALUES ASSUMING THE LINK TWO AND THREE ARE
IN PLANAR MOTION AND ANGULAR VELOCITY IS IN THE Z DIRECTION

LINK TWO

THEORITICAL ANGULAR VELOCITIES(APPLIED IN THE Z DIRECTION )
MATB(16) = o ooo
MATB(17) = 0.0D0
MATB({18) = -((PI**3) / 8.0D0) * DSIN(W * TIME)
THDDOT = = MATB(18)
THTDOT = INTGRLE(PI**Z)/4 , THDDOT)
THETRE = INTGRL(O.,THTD
THETAB = THETRB * RADEG

LINEAR VELOCITIES

MATB(14) = -STHDDOT * RBGZélgg + STHTDOT *ok 2; * RBGZéZg
MATB(13) = (THDDOT * RBG2(2)) + (THTIDOT ** 2) * RBG2(l
MATB(15) = 0.0DO

LINK THREE

ANGULAR VELOCITIES
MATB(27) = 0.0DO
MATB(26) = 0.0D0O
MATB(25) = 0.0D0Q

LINEAR VELOCITIES
MATB(24) = MATB(LS '
MATB(23) = MATB(14 +2THDDOT*RAG221;g-gTHTDOT**Zg*&RAGZQZKZ
MATB(22) = MATB(13)-(THDDOT*RAG2(2))-(THTDOT**2)*(RAG2(1

END OF THE INFORMATION FOR THE Z DIRECTION

NEXT SET OF STATEMENTS ARE COMMON IN ANY PLANAR MOTION AND THEY ARE
IN YHE CODE IN EVERY CASE. THESE TERMS ARE ACCELERATION OF THE LINK
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555
505

ONE AND FORCES AT EACH JOINT

LINK ONE LINEAR AND ANGULAR ACCELERATIONS

MATB(4) = 0.0DO
MATB(S5) = 0.CDO
MATB(6) = 0.0DO
MATB(7) = 0.0DO
MATB(8) = 0.0DO0
MATB(9) = 0.0DO
FORCES
JOINT TWO
MATB(21) = -MASS3 * MATB
MATB(20) = -MASS3 * MATB
MATB(19) = -MASS3 * MATB
JOINT ONE
MATB(12) = MATB(21) -
MATB(11) = MATB(20) -
MATB(10) = MATB(19) -
JOINT ZERO
MATB(3) = MATB(12) -
MATB(2) = MATB(11) -
MATB(l) = MATB(10) -

END OF THE INFORMATION
MULTIPLY MATA AND MATB

DO 505 J = 1,27
SUMl = 0.0
DO 555 K = 1,27

MASS2
MASS2
MASS2

MASS1
MASS1
MASS1

* %

* % A

; = WG3

MATB

MATB§g§ ~WG1l
MATB(4

SUML = SUM1l + MATA(J,K) * MATB(K)

CONTINUE
DQ(J) = SuMl
CONTINUE

DO 506 I =1,27
MATC(I) = DQ(I)

506 CONTINUE
CALL EQUATION SOLVER PROGRAM FROM IMSL
CALL LEQT2F(MATA ,M,N,IA,DQ,IDGT,WKAREA, IER)

IF (IER .NE. 0) CALL ENDJOB

FIND LCOGX,LCOGY,LCOGZ,THETA VALUES,WX,WY,WZ

LINK ONE
AX1 = DQ(4)
VELX1 = IgTGRLEO.,AXl)
LCOGX1 = INTGRL
LCOGX(1) = LCOGX1
AYl = DQ(5)
VELY1 = IgTGRLEO.,AYl)
LCOGY1 = INTGRL
LCOGY (1) = LCOGYl
AZ1 = DQ(6)
VELZ1 = IgTGRLEO.,A21)
LCOGZ1 = INTGRL
LCOGZ(1) = LCOGZl
WDLX = DQ(7)
W1X = IgTGRL(O.,WDIX)
WDX(1) = WD1X
Wi(l) = WX
WD1Y = D%(B)
WlY = INTGRL(0.,WD1Y)
WDYél) = WDlY
Wi(2) = W1y

X1,VELX1)

Y1,VELYl1)

21,VELZ1)
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WD1lZ

= 3g(s)
Wiz = INTGRL(0.,WD12)
WDZ2(1) = WD12
W1(3) = WlZ
* TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE

SYSTEM FOR THE LINK ONE
MATIR(1,1) = DCOS(RLRZ1) * DCOS(PTRY1)

MAT1R(2,1) = DCOS(RLRZ1) * DSIN(PTRY1l) * DSIN(YWRX1)
DSIN(RLRZ1) * DCOS(YWRX1)

MATIR(3,1) = DCOS(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1)
DSIN(RLRZ1) * DSIN(YWRX1)

MAT1R(1,2) = DSIN(RLRZ1) * DCOS(PTRYl)

MATI1R{2,2) = DSIN(RLRZ1) * DSIN(PTRY1l) * DSIN(YWRX1)
DCOS(RLRZ1) * DCOS(YWRX1)

MAT1R(3,2) = DSIN(RLRZ1) * DSIN(PTRY1l) * DCOS(YWRX1)
DCOS (RLRZ1) * DSIN(YWRX1)

+

+

MATIR(1,3) = -DSIN(PTRY1)
MAT1R(2,3) = DCOS(PTRYl) * DSIN(YWRX1)
MAT1R(3,3) = DCOS(PTRY1l) * DCOS(YWRX1)

GET THE VELOCITIES FOR LINK 1 IN BODY FIXED COOR. SYSTEM

DO 605 J = 1,3
SUML = 0.0D0
DO 606 K = 1,3
SUML = SUML + MATIR(J,K) * W1(K)

606 CONTINUE
BRATEL(J) = SUML
605 CONTINUE

TRANSFORMATION MATRIX FROM BODY FIXED TO EULER COORDINATE
SYSTEM FOR THE LINK ONE

MATIT(1,1) = 0.0DO

MATIT(2,1) = 1.0D0

MAT1T(3,1) = 0.0DO

MATIT(1,2) = Dcosgywax1;

MAT1T(2,2) = DTAN(PTRYl) * DSIN/YWRX1)
MATIT(3,2) = 1.0DO/DCOS(PTRY1) * DSIN(YWRX1)
MAT1T(1,3, = -DSIN YWRXI;

MATIT 2,32 = DTAN(PTRY1) * DCOS(YWRX1)
MAT1T(3,3) = 1.DO/DCOS(PTRY1) * DCOS(YWRX1)

GET THE YAW,PITCH AND THE ROLL RATES FOR LINK ClE

DO 705 J = 1.3
SUM1 = 0.0DO
DO 706 K = 1,3
SUM1 = SUMl + MATIT(J K) * BRATE.

706 CONTINUE
RATE1(J) = SUMI

705 CONTINUE
RATE1X = RATE1{1)
RATELY = RATEL(2)
RATEIZ = RATEL(Z:
YWRX1 = INIGRL I. FAlf
PTRYL = INIGRI ©. Falf
RLARZI = INIGEL .. ®al:

AWANK L R R
- R -

.......




~aD-a189 707

MEN
pugesy ;
K DEC 8

UNCLASSIFIED F/G 1279 NL

END
- P
P —




c T v v —— s

o &
E 3.
&

— 53
= 7. 3.6

s 5 1

| ) EY TP

% |




*

* %

DRCSX(1) = DSIN(RLRZ1) * DSIN(PTRY1l) * DCOS(YWRX1l) -...
DCOS(RLRZ1) * DSIN(YWRX1)

DRCSZ(1) = DCOS(PTRY1) * DCOS(YWRX1)
GET THE ANGLES AS RADIANS

DRCRAX(1) = DACOS(DRCSX(1
DRCRAY(1) = DACOS(DRCSY(1l
DRCRAZ(1) = DACOS(DRCSZ(1

CONVERT THE DIRECTION COSINES TO DEGREES

DRCANX(1) = DACOS(DRCSX(1)) * RADEG
DRCANY(1) = DACOS(DRCSY(1)) * RADEG
DRCANZ(1) = DACOS(DRCSZ(1)) * RADEG
LINK TWO
AX2 = DQ(13)
VELX2 ="INTGRL(O.,AX2)
LCOGX2 = INTGRL(X2,VELK2)
LCOGX(2) = LCOGX2
AY2 = DQ(14)
VELY2 = IRTGRL(0. ,Av2)
LCOGY2 = INTGRL{Y2,VEL¥2)
LCOGY(2) = LCOGY2
AZ2 = DO(15)
VELZ2 = ISTGRLgo.,AZZ
LCOGZ2 = INTGRL(Z2,VELZ2)
LCOGZ(2) = LCOGZ2
WD2X = DQ(16
WaX 2 IRIGRL((Pr#*2) /4., Wp2K)

USE THE INIT. COND. WITH ONLY WHICHEVER VELOCITY APPLIED
AND KEEP THE TWO OTHER ANG. VEL. INIT. COND. AS ZERO

USE THE NEXT STATEMENT IF THE ANGULAR VELOCITY IS IN THE X DIR.

THETRD = INTGRL(O.,W2X)
WDX(2) = WD2X

W2(1) = W2X

WD2Y = D8(17)

w2y = INTGRL(O.,WD2Y)

USE THE NEXT STATEMENT IF THE ANGULAR VELOCITY IS IN THE Y DIR.
THETRD = INTGRL(O.,W2Y)

WDY§2) = WD2Y

w2(2) = W2Y

WD22Z = D8(18)

waz = INTGRL(0.,WD2Z)

USE THE NEXT STATEMENT IF THE ANGULAR VELOCITY IS IN THE Z DIR.
THETRD = INTGRL(0.,WzZ)
WDZ§2) WD22
W2(3) W2z

THETAD = THETRD * RADEG
ERROR = ABS(((THETAD-THETAB)/180.) * 100)

TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
SYSTEM FOR THE LINK TWO

MAT2R(1,1) = DCOS(RLRZ2) * DCOS(PTRY2)

MAT2R(2,1) = DCOS(RLRZ2) * DSIN(PTRY2) * dSIN(YWRXZ) e
DSIN(RLRZZ) * DCOS(YWRX2)

MAT2R(3,1) = DCOS(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) +...
DSIN(RLRZZ2) * DSIN(YWRX2)

MAT2R(1,2) = DSIN(RLRZ2) * DCOS(PTRY2)
MAT2R(2,2) = DSIN(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) +...

96




DCOS(RLR22) * DCOS(YWRX2)
MAT2R(3,2) = DSIN&RLRZZ%)* DSIN(PTRY2) * DCOS(YWRX2) -...

DCOS(RLRZ2) * DSIN(YWRX
MAT2R(1,3) = -DSIN(PTRY2)
MAT2R(2,3) = DCOS(PTRY2) * DSIN(YWRX2)
MAT2R(3,3) = DCOS(PTRY2) * DCOS(YWRX2)
* GET THE VELOCITIES FOR LINK 2 IN BODY FIXED COOR. SYSTEM
DO 607 J = 1,3
SUM1 = 0.0D0

DO €08 K = 1,3
SUM1 = SUM1 + MAT2R(J,K) * W2(K)

608 CONTINUE
BRATE2(J) = SUMI
607 CONTINUE '
* TRANSFORMATION MATRIX FROM BODY FIXKED TO EULER COOR. SYSTEM
X FOR THE LINK TWO .
MAT2T(1,1) = 0.0DO
1 MAT2T(2.1}) = 1.000
MAT2T(3/1) = 0.0D0
; MATZT(1,2) = DCOS(TWRX2)
MAT2T(2,2) = DIAN(PTRYZ) * DSIN(YNRX2)
\ | MAT2T(32} = 1.0D0/DCOS(PTRY2) * DSIN(YWRX2)
KATZT(1,3) = -BSTN(TNRKZ)
MATZT(2)3) = DTAN(PTRYZ) * DCOS(YWRX2)
MAT2T(3.3) = 1.0D0/DCOS(PTRYZ) * DCOS (YWRK2)
, * GET THE YAW,PITCH AND THE ROLL RATES FOR LINK TWO
DO 707 J = 1,3 -
1 _ SUML = 0.0D0

DO 708 K = 1,3
SUM1 = SUM1 + MAT2T(J,K) * BRATE2(K)
708 CONTINUE
RATE2(J) = SUML
707 CONTINUE

RATEZX
RATE2Y = RATEZ2(2
RATE2Z = RATEZ(3

* USE THE NEXT THREE STATEMENTS FOR CASE A
YWRX2 INTGRLgO-,RATEZX

S

PTRY2 = INTGRL(O.,RATE2Y
RLRZ2 = INTGRL(-PI/2.,RATE2Z)

USE THE NEXT THREE STATEMENTS FOR CASE B
YWRXZ INTGRLZO.,RATEZXE
22)

PTRY2 = INTGRL(O.,RATE2Y
RLRZZ = INTGRL(PI/Z2.,RAT

USE THE NEXT THREE STATEMENTS FOR CASE C

YWRXZ2 = INTGRL(O.,RATE2X
PTRY2 = INTGRL(O.,RATE2Y
RLRZ2 = INTGRL(Q.,RATE2Z

! RATE2§1§ RATE2X

-
AN X XXX *

RATE2(2 RATEZY
RATEZ2Z

YWRX2 * RADEG '
PTCANY(2 PTRY2 * RADEG
ROLANZ(2 RLRZZ * RADEG

* USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK TWO FOR CASE A

DRCSY(Z&Z= DCOS(RLRZ2) * DSIN(PTRY2) * DSIN(YWRXZ) ~-...
DSIN(RLRZ22) * DCOS(YWRX2)

DRCSX(2) = DSIN(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) +...
97

3
YAWANX§2§

e o




DCOS (RLRZ22) * DCOS (YWRX2)
DRCSZ2(2) = DCOS(PTRY2) * DSIN(YWRX2)

* USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK TWO FOR CASE B
* DRCSY(2) = DCOS(RLRZ2) * DCOS(PTRY2)
* DRCSX(2) = DSIN(RLRZ2)*DCOS(PTRY2)
* DRCSZ(2) = -DSIN({PTRY2)
* USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK TWO FOR CASE C
* DRCSY( DCOS(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) +...
* DSIN(RL&ZZ) * DSIN(YWRX2)
* DRCSX DSIN(RLEZZ) * DSIN(PTRYZ) * DCOS(YWRX2) -
* DCOS(&LAZZ) §IN(
* DRCSZ(2) = DCOS(PTRY2) * ucos(ywnxz)
* GET THE ANGLES AS RADIANS
% DRCRAX(2) = DACOS(DRCSX(2
DRCRAY(2) = DACOS(DRCSY(2
1 DRCRAZ({2) = DACOS(DRCSZ(2
* CONVERT THE DIRECTION COSINES TO DEGREES
A DRCANX(2) = DACOS(DRCSX(2)) * RADEG
‘ DRCANY(2) = DACOS(DRCSY(2)) * RADEG
DRCANZ{2) = DACOS(DRCSZ(2)) * RADEG
* FIND THE JOINT LOCATION
' JX1 = (L(1,1) + L(1,2)) * DCOS(DRCRAX(1
: W1 = (C{1°1) + L(1.2)) * DCOS(DRCRAY(1
JZ1 = (L{I'1) + C{1'2)) * DCOS{DRCRAZ(1
* LINK THREE
6 AX3 = DQ(22)
4 VELX3 = INTGRLgo (AX3)
LCOGXK3 = INTGRL(X3 VELK3)
LCOGK(3) = LCOGX3
AY3 = pg(23)
VELY3 =1 GRLéO ,AY3
LCOGY3 = INTGRL{Y3 VELY3)
LCOGY(3) = LC 0GY3
AZ3 = DQ(24)
VELZ3 =1 TGRL(O ,AZ3)
: LCOGZ3 = INTGRL(Z3 VELZ3)
LCOGZ(3) = LCoGz3
WD3X =
W3X = ISTGRE(O ,WD3X)
WDX(3) =
W3(1) =
WD3Y = DQ(26
Wiy = 18463&(0.,wosv)
WDY(3) = WD3Y
W3(2) = W3y
W32 =
= IS§GR£(0 ,WD32)
» wozis) =
] W3( =
* TRANSFORMATION HATRIX FROM EARTH FIXED TO BODY FIXED COOR. SYSTEM
* FOR THE LINK THREE
MAT3R(1,1) = DCOS(RLRZ3) * DCOS(PTRY3)
MAT3R(2,1) = DCOS RLRZ3; * DSIN(PTRY3) * DSIN(YWRK3) -...
DSIN(RLRZ3) * DCOS (YWRX3)
MAT3R(3,1) = DCOS(RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3) +...
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DSIN(RLRZ3) * DSIN(YWRX3)
MAT3R(1,2) = DSIN(RLRZ3) * DCOS(PTRY3)

MAT3R(2, 3 DSIN(RLRZ3% * DSIN(PTRY3) * DSIN(YWRX3) +...
DCOS (RLR23) * DCOS (YWRX3)

MAT3R(3, 23)3 DSIN§RLRZ33 * DSIN(PTRY3) * DCOS(YWRX3) -

DCOS (RLRZ DSIN(YWRX
MAT3R(1,3) = -DSIN(PTRY3)
3 MAT3R(2,3) = DCOS(PTRY3) * DSIN(YWRX3)
MAT3R(3,3) = DCOS(PTRY3) * DCOS(YWRX3)
r * GET THE VELOCITIES FOR LINK 3 IN BODY FIXED COOR. SYSTEM
3 DO 609 J =1,3
SUML = 0.0D0

DO 610 K = 1,3
SUM1 = SUM1 + MAT3R(J, K) * W3(K)
610 CONTINUE
BRATE3(J) = SUM1
609 CONTINUE

* TRANSFORMATION MATRIX FROM BODY FIXED TO EULER COOR. SYSTEM
* FOR THE LINK THREE

HAT3T§1,1§ 0.0D0

o

N\ MAT3T(2,1 1.0D0
MAT3T(3,1 0.0D0

MAT3T(1,2 DCOS Ywaxsg
MAT3T(2.2 DTAN(PTRY3) * DSIN(YWRX3)
MAT3T(3,2 1.0D0/DCOS(PTRY3) * DSIN(YWRX3)

-DSIN YWRX3;
DTAN(PTRY3) * DCOS(YWRX3)
1.0D0/DCOS(PTRY3) DCOS (YWRX3)

AND THE ROLL RATES FOR LINK THREE
3

wN -

o~~~
- Www

9 g wunnn nauao

* GET THE YAW,

Do 709
SUML
DO

710 CONTIN
RATE3(J
709 CONTINUE

RATE3X
RATE3Y
i RATE3Z = RATE3

* USE THE NEXT THREE FOR THE CASE A
YWRX3 INTGRL%O.,RATE3X;
E3Z)

O“ % Bt e

Y
—
O

1,

.0DO
K=1,3

= SUM1 + MAT3T(J,K) * BRATE3(K)

= SUM1

~ZWNn
vmg
=

uan
-
[}
w

PTRY3 = INTGRL(O. RATE3Y
RLRZ3 = INTGRL(-P1/2. RA

USE THE NEXT THREE FOR THE CASE B

YWRX3 = INTGRL{O.,RATE3X
PTRY3 = INTGRL(O., RATE3Y
RLR23 = INTGRL(PI/2.,RATE3Z)

USE THE NEXT THREE FOR THE CASE C

YWRX3 = INTGRL(O.,RATE3X
PTRY3 = INTGRL(O.,RATE3Y
RLRZ3 = INTGRL(O.,RATE3Z

f YAWANX 3; = YWRX3 * RADEG

AN ¥ XN A X

PTCANY(3) = PTRY3 * RADEG
ROLANZ(3) = RLRZ3 * RADEG

* USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK THREE FOR CASE A

DRCSY DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) -
DSIN(éL&Z3) éOS(YWR ( ) ( )
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END

STOP
FORTRAN

SUBROUTINE TO COMPUTE THE CROSS PRODUCT OF TWO VECTORS

*

DRCSX = DSIN RLRZ * DSIN(PTRY3 * DSIN(YWRX3)+...
DCOS(éL&Z OS( ) ( )

DRCSZ(3) = DCOS(PTRY3) * DSIN(YWRX3)

USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK THREE FOR CASE B

DRCSY(3) = DCOS(RLRZ23) * DCOS(PTRY3)
DRCSX(3) = DSIN(RLRZ3)*DCOS(PTRY3)

DRCSZ(3) = -DSIN(PTRY3)

USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK THREE FOR CASE C

DRCSY(3&Z= DCOS RLRZ3 * DSIN(PTRY3) * DCOS (YWRX3)+...

DSIN(RL DSIN(YW
nacsx(3&z DSIN RLstz(x* DSIN(PTRY3) * DCOS(YWRX3)-...
DCOS(RLRZ3) * DSIN(YWRX3)

DRCS2(3) = DCOS(PTRY3) * DCOS(YWRX3)
GET THE ANGLES AS RADIANS

DRCRAX(3) = DACOS(DRCSX(3
DRCRAY(3) = DACOS(DRCSY(3
DRCRAZ(3) = DACOS(DRCSZ(3

CONVERT THE DIRECTION COSINES TO DEGREES

DRCANX(3) = DACOS(DRCSX(3)) * RADEG
DRCANY(3) = DACOS(DRCSY¥(3)) * RADEG
DRCANZ(3) = DACOS(DRCSZ(3)) * RADEG

FIND ANGLE BETWEEN LINK 2 AND LINK 3 TO CHECK IF THE ARM LINKS
are PASSING THROUGH THE SINGULAR POINTS

ANG23X = DRCANX 2 - DRCANX 3
ANG23Y = DRCANY(2) - DRCANY(3
ANG23Z = DRCANZ(2) - DRCANZ(3
ANG12X = DRCANX(1l) - DRCANX(2
ANG12Y = DRCANY(1) - DRCANY(2
ANG12Z = DRCANZ(1) - DRCANZ(2

FIND THE JOINT LOCATION

|
|

JX2 = JX1 + (L(2,1) + L(2,2)) * DCOS(DRCRAX(2
JY2 = Jyl + (L(2,1) + L(2,2)) * DCOS(DRCRAY(2
JZ2 = JZi + -L 2,1) + L(2,2)) * DCOS(DRCRAZ(2
TIPX = JX2 + 3,1 + L(3, * DCOS(DRCRAX(3
TIPY = JY2 + 3,1) + L(3, * DCOS(DRCRAY(3
TIPZ = JZ22 + 3, + L(3, * DCOS(DRCRAZ(3

SUBROUTINE CPROD(VECTA,VECTB,MI,MJ,MK)
IMPLICIT REAL*8 (A-Z)

DIMENSION VECTA(3 ECTB(3)
HI = VECTA(2 CTB 3 - VECTA(3) * VECTB(2
MJ = VECTA(3 * VECTB - VECTA(1) * VECTB(3
MK = VECTA(l) * VECTB(2) - VECTA(2) * VECTB(1
B

7

100




LIST OF REFERENCES

Fu, K. §S., Gonzales, R. C., Lee, C. S. G., Robotics:
Control. Sensing, Visjon. and Intelligence, pp. preface
9, McGraw-Hill Book Co., 1987.

Fu, K. S., Gonzales, R. C., Lee, C. S. G., Robotics:
Co-trol. Sensing, Vision. and Intelligence, pp. 36-41,
l.cGraw-Hill Book Co., 1987.

Craig, J. J., Introduction to Robotic Mechanism and
Control, pp. 146-149, Addison-Wesley Co., 1986.

Walker, M. W., and Orin, D. E., "Efficient Dynamic
Computer Simulation of Robot Mechanism,” ASME J. of
Dynamics Systems, Measurements and Control Vol. 104,
pp. 205-211.

Luh, J. Y. S., Walker, M.W., and Paul, R. P. C., "On-
line Computational Scheme for Mechanical Manipulators, "
ASME J. of Dynamic Systems, Measurements and Corntrol
Vol. 102, pp. 69-76, June 1980.

Hollerbach, J. M., "A Recursive Langrangian Formulation
of Manipulative Dynamics and a Comperative Study of
Dynamics Formulation Complexity,"” IEEE Trans. SYST Man.
and Cybern. Vol. SMC10 No. 11, pp. 730-736, 1980.

Paul. R., "The Mathematics of Computer Controlled
Manipulators,” Proceedings Joint Control Conference

Vol. I, pp. 124-131, 1977.

101




ey

Yy

L g

Ry

10.

11.

12.

13.

14.

Williams, R. J., and Seireg, A., "Interactive Modelling
and Analysis 'of Open and Close Loop Dynamics System
with Redundant Actuators,"” ASME J. of Mechanical Design
Vol. 101 No. 3, pp. 407-416, July 1979.

Kane, T., and Levinson, D. A., "The Use of Kane’s
Dynamical Equations in Robotics,"” International J. of
Robotics Research Vol. 2 No. 3, pp. 3-21, Fall 1983.
McCartﬁy. W. F., "Simulation of High Speed Motion of
Rigid Revolute Mechanism,” M. S. Thesis, Naval
Postgraduate School, Monterey, California, December
1985.

Paul, R. P., and Stevenson, C. N., "Kinematics of Robot
Wrists,” International J. of Rbbotics Research Vol. 2
No. 1, pp. 31-38, Spring 1983.

Barker, K. L., "Kinematic Equations for Resolved Rate
Control of an Industrial Robot Arm,"” NASA Technical
Memo., 85685, pp. 1-35, November 1983.

Barker, K. L., Houck, J. A., and Carzoo, S. W.,
“Translational Control of a Graphicially Simulated
Robot Arm by Kinematic Rate Equations that Overcome
Joint Elbow Singularity,” NASA Tech. Paper, 2376,
December 1984.

Waldron, K. J., Wang, S., and Bolin, S. J., "A Study of
the Jacobian Matrix of Serial Manipulators,” ASME
Design Engineering Technical Conference, Cambridge,
Massachusetts, October 7-10, 1984,

102




15.

16.

17.

18.

19.

20.

21.

Yoshikowa, T., “Analysis and Control of Robot
Manipulators with Redundancy,” in Robotics Research
First International Symposium, ed. M. Brady and R.
Paul, Cambridge, Massachusetts, pp. 735-748, 1984.

Hollerbach, J. M., "Optimum Kinematics Design for a

Seven Degree of Freedom Maﬁipulator. 2nd International
Symposium of Robotics Research, Kyoto, Japan, pp. 349-
356 August 20-23, 1984.

Luh, J. Y. S., and Gu, Y. L., "Industrial Robots with
Seven Joints," IEEE International Conference on
Robotics and Automation, pp. 1010-1015, March 25-28,
1985.

Khayyam, M., “Non-Singular Modelling of Rigid
Manipulators,” M. S. Thesis, Naval Postgraduate School,
Monterey, California, December 1986.

Meriam, J. L., Engineering Mechanics Vol. 2, Dvnamics,
John Wiley and Sons, 1978.

Frank, A. A., McGhee, R. B., "Some Considerations
Relating to the Design of Autopilots for Legged
Vehicles," J. of Terramechanics Vol.6, pp. 23-35, 1969.
Torby, B. J., Advanced Dvnamics for Fns&ineers, pp. 218-
221, HRW Series in Mechanical Engineering, 1984.

103




10.

INITIAL DISTRIBUTION LIST

Defence Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Department Chairman, Code 69
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California 93943-5000

Professor D. L. Smith, Code 69Sm
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California 93943-5000

Professor Nunn, Code 69 Nn
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California 93943-5000

Professor Chang, Code 69 Ck
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California 93943-5000

Ms. Mary Lacey
Naval Surface Weapons Center
White Oack, Code R402

No.

Robotics Research and Development Center

10908 New Hampshire Avenue
Silver Springs, Maryland 20903-5000

Kara Kuvvetleri Komutanligi
Arastirma Gelistirme Dairesi
Bakanliklar, Ankara, Turkey

Kara Harp Okulu Komutanligi
Ogretim Kurulu Baskanligi
Bakanliklar, Ankara, Turkey

Topcu ve Fuze Okul Komutanligi

Ogretim Kurulu Baskanligi
Polatli, Ankara, Turkey

104

Copies

10



11.

ist Lieutenant S. Altinok,

Turkish Army
Eski Bagdat Caddesi No. 46/8
Kucukyali, Istanbul 81570, Turkey

105







